Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T21:55:34.625Z Has data issue: false hasContentIssue false

Irrigation as an adaptive strategy to climate change: an economic perspective on Brazilian agriculture

Published online by Cambridge University Press:  01 April 2014

Dênis Antônio da Cunha
Affiliation:
Universidade Federal de Viçosa, Departamento de Economia Rural, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-000, Viçosa, Brazil. Tel: +55 31 38991335. E-mail: denis.cunha@ufv.br
Alexandre Bragança Coelho
Affiliation:
Universidade Federal de Viçosa, Departamento de Economia Rural, Brazil. E-mail: acoelho@ufv.br
José Gustavo Féres
Affiliation:
Instituto de Economia Aplicada, Brazil. E-mail: jose.feres@ipea.gov.br

Abstract

This paper analyzes the potential effects of climate change on Brazilian agriculture by considering irrigation as an adaptive strategy. Investigations were performed to determine how climatic variability influences irrigation and whether this adaptive measure actually reduces producers' vulnerability to climate change. We used a simultaneous equations model with endogenous switching to account for the heterogeneity in the decision of whether to use adaptive measures. We compared the expected land values under the actual and counterfactual cases of farm households that either adapt or do not adapt to climate change. Simulation results show that irrigation can be an effective tool for counteracting the harmful effects of climate change. The income of farmers tends to increase on lands where irrigation technologies are practiced. These conclusions confirm the need to invest in adaptation strategies to prepare Brazil for coping with the adverse effects of global climate change.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. and Reis, E. (2007), ‘The effects of climate change on Brazilian agricultural profitability and land use: cross-sectional model with census data’, Final Report to WHRC/IPAM for LBA project Global Warming, Land Use, and Land Cover Changes in Brazil, Brazil.Google Scholar
Ávila, A.F.D, Irias, L.J., and Lima, M. (2006), Impacto das Mudanças Climáticas na Agricultura Brasileira, Brasilia: Empresa Brasileira de Pesquisa Agropecuária.Google Scholar
Cameron, A.C. and Trivedi, P.K. (2010), Microeconometrics Using Stata (2nd edn), College Station, TX: Stata Press.Google Scholar
Cline, W.R. (2007), Global Warming and Agriculture: Impact Estimates by Country, Washington, DC: Peterson Institute for International Economics.Google Scholar
Cunha, D.A., Coelho, A.B., Féres, J.G., and Braga, M.J. (2013), ‘Irrigação como estratégia de adaptação de pequenos agricultores às mudanças climáticas: aspectos econômicos’, Revista de Economia e Sociologia Rural 51: 369386.Google Scholar
Cunha, D.A., Coelho, A.B., Féres, J.G., and Braga, M.J. (2014), ‘Effects of climate change on irrigation adoption in Brazil’, Acta Scientiarum. Agronomy 36: 19.Google Scholar
Deschênes, O. and Greenstone, M. (2007), ‘The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather’, American Economic Review 97: 354385.CrossRefGoogle Scholar
Di Falco, S., Veronesi, M., and Yesuf, M. (2011), ‘Does adaptation to climate change provide food security? A micro-perspective from Ethiopia’, American Journal of Agricultural Economics 93: 829846.Google Scholar
Di Paolo, A. and Raymond, J.L. (2012), ‘Language knowledge and earnings in Catalonia’, Journal of Applied Economics 15: 89118.Google Scholar
Embrapa, (2008), Aquecimento Global e a nova Geografia da Produção agrícola no Brasil, Brasilia: Empresa Brasileira de Pesquisa Agropecuária.Google Scholar
Evenson, R.E. and Alves, D. (1998), ‘Technology, climate change, productivity and land use in Brazilian agriculture’, Planejamento e Políticas Públicas 18: 223258.Google Scholar
Féres, J., Reis, E.J., and Speranza, J.S. (2008), ‘Assessing the impact of climate change on the Brazilian agricultural sector’, Proceedings of the 16th Annual Conference, European Association of Environmental and Resource Economists, Gothenburg.Google Scholar
Harb, A., Krishnan, A., Ambavaram, M.M.R., and Pereira, A. (2010), ‘Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth’, Plant Physiology 154: 12541271.CrossRefGoogle ScholarPubMed
IBGE (2006), Censo Agropecuário 2006: Brasil, Grandes Regiões e Unidades da Federação, Rio de Janeiro: Instituo Brasileiro de Geografia e Estatística.Google Scholar
IPCC (2007), Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva: International Panel on Climate Change.Google Scholar
Kim, S.Y., Nayga, R.M. Jr., and Capps, O. Jr. (2000), ‘The effect of food label use on nutrient intakes: an endogenous switching regression analysis’, Journal of Agricultural and Resource Economics 25: 215231.Google Scholar
Kurukulasuriya, P. and Mendelsohn, R. (2008), ‘A Ricardian analysis of the impact of climate change on African cropland’, African Journal of Agriculture and Resource Economics 2: 123.Google Scholar
Kurukulasuriya, P., Kala, N., and Mendelsohn, R. (2011), ‘Adaptation and climate change impacts: a structural Ricardian model of irrigation and farm income in Africa’, Climate Change Economics 2: 149174.CrossRefGoogle Scholar
Lee, L.F. and Trost, R.P. (1978), ‘Estimation of some limited dependent variable models with application to housing demand’, Journal of Econometrics 8: 357382.CrossRefGoogle Scholar
Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., et al. (2009), ‘Trends in the sources and sinks of carbon dioxide’, Nature Geoscience 689: 16.Google Scholar
Lokshin, M. and Sajaia, Z. (2004), ‘Maximum likelihood estimation of endogenous switching regression models’, Stata Journal 4: 282289.Google Scholar
Maddala, G.S. (1983), Limited Dependent and Qualitative Variables in Econometrics, Cambridge: Cambridge University Press.Google Scholar
Maddala, G.S. and Nelson, F.D. (1975), ‘Switching regression models with exogenous and endogenous switching’, Proceedings of the American Statistical Association (Business and Economics Section), pp. 423–426.Google Scholar
Magrin, G., Garcia, C.G., Choque, D.C., Gimenez, J.C., Moreno, A.R., Nagy, G.J., Carlos, N., and Villamizar, A. (2007), ‘Latin America’, in Parry, M.L., Canziani, O., Palutikof, J.P., Van Der Linden, P.J. and Hanson, C.E. (eds), Climate Change 2007: Impacts, Adaptation, and Vulnerability – Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 581615.Google Scholar
Marengo, J., Nobre, C., Chou, S.C., Tomasella, J., Sampaio, G., Alves, L., Obregón, G., Soares, W., Betts, R., and Kay, G. (2011), Dangerous Climate Change in Brazil: a Brazil-UK Analysis of Climate Change and Deforestation Impacts in the Amazon, São José dos Campos: Instituto Nacional de Pesquisas Espaciais.Google Scholar
Margulis, S. and Dubeux, C.B.S. (2010), Economia da Mudança do Clima no Brasil: Custos e Oportunidades, São Paulo: IBEP Gráfica.Google Scholar
Mendelsohn, R. and Seo, N. (2007), ‘Changing farm types and irrigation as an adaptation to climate change in Latin American agriculture’, World Bank Policy Research Working Paper No. 4161, Washington, DC.CrossRefGoogle Scholar
Mendelsohn, R., Nordhaus, W., and Shaw, D. (1994), ‘The impact of global warming on agriculture: Ricardian analysis’, American Economic Review 84: 753771.Google Scholar
Ministério da Integração Nacional (2008), A Irrigação no Brasil: Situação e Diretrizes, Brasília: IICA.Google Scholar
Moffatt, P.G. (2005), ‘Hurdle models of loan default’, Journal of the Operational Research Society 56: 10631071.CrossRefGoogle Scholar
Nakamura, A. and Nakamura, M. (1998), ‘Model specification and endogeneity’, Journal of Econometrics 83: 213237.Google Scholar
Negri, D.H., Gollehon, N.R., and Aillery, M.P. (2005), ‘The effects of climatic variability on US irrigation adoption’, Climate Change 69: 299323.Google Scholar
Nobel, P.S. (2009), Physicochemical and Environmental Plant Physiology (4th edn), Amsterdam: Elsevier.Google Scholar
Nobre, C.A., Assad, E.D., and Oyama, M.D. (2005), ‘Mudança ambiental no Brasil: O impacto do aquecimento global nos ecossistemas da Amazônia e na agricultura’, Scientific American Brasil 80: 7075.Google Scholar
Oliveira, L.J.C., Costa, M.H., Soares-Filho, B.S., and Coe, M.T. (2013), ‘Large-scale expansion of agriculture in Amazonia may be a no-win scenario’, Environmental Research Letters 8: 110.Google Scholar
Pidgeon, N. and Fischhoff, B. (2011), ‘The role of social and decision sciences in communicating uncertain climate risks’, Nature Climate Change 1: 3541.CrossRefGoogle Scholar
Sanghi, A., Alves, D., Evenson, R., and Mendelsohn, R. (1997), ‘Global warming impacts on Brazilian agriculture: estimates of the Ricardian model’, Economia Aplicada 1: 733.Google Scholar
Schlenker, W., Hanemann, W.M., and Fisher, A.C. (2005), ‘Will U.S. agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach’, American Economic Review 95: 395406.CrossRefGoogle Scholar
Seo, N. (2010), ‘A microeconometric analysis of adapting portfolios to climate change: adoption of agricultural systems in Latin America’, Applied Economic Perspectives and Policy 32: 489514.CrossRefGoogle Scholar
Seo, N. (2011), ‘An analysis of public adaptation to climate change using agricultural water schemes in South America’, Ecological Economics 70: 825834.Google Scholar
Seo, N. and Mendelsohn, R. (2008a), ‘An analysis of crop choice: adapting to climate change in South American farms’, Ecological Economics 67: 109116.CrossRefGoogle Scholar
Seo, N. and Mendelsohn, R. (2008b), ‘A Ricardian analysis of the impact of climate change on South American farms’, Chilean Journal of Agricultural Research 68: 6979.Google Scholar
Siqueira, O.J.F., Farias, J.R.B., and Sans, L.M.A. (1994), ‘Efeitos potenciais de mudanças climáticas globais na agricultura brasileira e estudos de adaptação para trigo milho e soja’, Revista Brasileira de Agrometeorologia 2: 115129.Google Scholar
Stern, N. (2007), The Economics of Climate Change: the Stern Review, Cambridge: Cambridge University Press.CrossRefGoogle ScholarPubMed
Stern, N. (2008), ‘The economics of climate change’, American Economic Review 98: 137.Google Scholar
Sweeney, D.W. and Granade, G.V. (2002), ‘Effect of a single irrigation at different reproductive growth stages on soybean planted in early and late June’, Irrigation Science 21: 6973.Google Scholar
Thomé e Castro, L., Neves, M.F., and Nakatani, J.K. (2013), ‘Modelos organizacionais para parcerias público-privadas na irrigação pública no Brasil’, Revista de Administração 48: 268280.CrossRefGoogle Scholar
Tollefson, J. (2010), ‘The global farm’, Nature 466: 554556.CrossRefGoogle ScholarPubMed
Tyree, M.T. (2007), ‘Water relations and hydraulic architecture’, in Pugnaire, F.I. and Valladares, F. (eds), Functional Plant Ecology (2nd edn), Boca Raton, FL: CRC Press, pp. 175212.Google Scholar