Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T04:52:21.311Z Has data issue: false hasContentIssue false

AN OPERATOR SUMMABILITY OF SEQUENCES IN BANACH SPACES

Published online by Cambridge University Press:  13 August 2013

ANIL KUMAR KARN
Affiliation:
School of Mathematical Sciences, National Institute of Science Education and Research, Institute of Physics Campus, P.O. Sainik School, Bhubaneswar 751005, Odisha, India e-mail: anilkarn@niser.ac.in
DEBA PRASAD SINHA
Affiliation:
Department of Mathematics, Dyal Singh College (University of Delhi), Lodi Road, New Delhi 110003, India e-mail: sinha.deba@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let 1 ≤ p < ∞. A sequence 〈 xn 〉 in a Banach space X is defined to be p-operator summable if for each 〈 fn 〉 ∈ lw*p(X*) we have 〈〈 fn(xk)knlsp(lp). Every norm p-summable sequence in a Banach space is operator p-summable whereas in its turn every operator p-summable sequence is weakly p-summable. An operator TB(X, Y) is said to be p-limited if for every 〈 xn 〉 ∈ lpw(X), 〈 Txn 〉 is operator p-summable. The set of all p-limited operators forms a normed operator ideal. It is shown that every weakly p-summable sequence in X is operator p-summable if and only if every operator TB(X, lp) is p-absolutely summing. On the other hand, every operator p-summable sequence in X is norm p-summable if and only if every p-limited operator in B(lp', X) is absolutely p-summing. Moreover, this is the case if and only if X is a subspace of Lp(μ) for some Borel measure μ.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.Bartle, N., Dunford, N. and Schwartz, J., Weak compactness and vector measures}, Canad. J. Math. 7 (1955), 289305.CrossRefGoogle Scholar
2.Bourgain, J. and Diestel, J., Limited operators and strictly cosingularity}, Math. Nachr. 119 (1984), 5558.CrossRefGoogle Scholar
3.Brace, B., Transformation on Banach spaces, PhD Dissertation (Cornell University Ithaca, NY, 1953).Google Scholar
4.Castillo, J. M. F. and Sánchez, F., Dunford–Pettis properties of continuous vector valued function spaces}, Rev. Mat. Univ. Comput. Madrid 6 (1993), 4359.Google Scholar
5.Castillo, J. M. F. and Sánchez, F., Weakly p-compact, p-Banach–Saks and super reflexive Banach spaces}, J. Math. Anal. Appl. 185 (1994), 256261.Google Scholar
6.Choi, Y. S. and Kim, J. M., The dual space of $(\mathcal{L} (X, Y), \tau_p)$ and the p-approximation property (pre-print).Google Scholar
7.Delgado, J. M., Oja, E., Pineiro, C. and Serrano, E., The p-approximation property in terms of density of finite rank operators}, J. Math. Anal. Appl. 354 (2009), 159164.CrossRefGoogle Scholar
8.Delgado, J. M., Pineiro, C. and Serrano, E., Operators whose adjoints are quasi p-nuclear}, Studia Math. 197 (3) (2010), 291304.Google Scholar
9.Diestel, J., A survey of results related to the Dunford–Pettis property}, Contemp. Math. 2 (1980), 1560.CrossRefGoogle Scholar
10.Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
11.Dunford, N. and Pettis, B. J., Linear operations on summable functions}, Trans. Amer. Math. Soc. 47 (1940), 323392.Google Scholar
12.Gelfand, I. M., Abstrakte Funktionen und lineare operatoren}, Rev. Roumaine Math. Pures Appl. 5 (1938), 742752.Google Scholar
13.Grothendieck, A., Sur les applications linéares faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
14.Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires}, {Mem. Amer. Math. Soc.}, Vol. 16 (AMS, Providence, RI, 1955).Google Scholar
15.Kwapień, S.Some remarks on (p, q)-absolutely summing operators in lp-spaces, Studia Math. 29 (1968), 327337.CrossRefGoogle Scholar
16.Lindenstruss, J. and Pelczynski, A., Absolutely summing operators in $\mathcal{L}_p$-spaces and their applications}, Studia Math. 29 (1968), 275326.Google Scholar
17.Phillips, R., On linear transformations}, Trans. Amer. Math. Soc. 48 (1940), 516541.CrossRefGoogle Scholar
18.Pietsch, A., Absolute p-summierende Abbildungen in normierten Räumen}, Studia Math. 28 (1967), 333353.CrossRefGoogle Scholar
19.Pineiro, C. and Delgado, J. M., p-convergent sequences and Banach spaces in which p-compact sets are q-compact}, Proc. Amer. Math. Soc. 139 (3) (2011), 957967.CrossRefGoogle Scholar
20.Rosenthal, H. P., On subspaces of Lp, Ann. Math. 97 (2) (1973), 344373.Google Scholar
21.Saphar, P. D., Produits tensoriels d'espaces de Banach et classes d'applications linéaires}, Studia Math. 38 (1970), 71100.Google Scholar
22.Sinha, D. P. and Karn, A. K., Compact operators whose adjoints factor through subspaces of lp}, Studia Math. 150 (2002), 1733.Google Scholar