Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-17T16:57:40.542Z Has data issue: false hasContentIssue false

Habitability around F-type stars

Published online by Cambridge University Press:  25 March 2014

S. Sato
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
M. Cuntz*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
C. M. Guerra Olvera
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
D. Jack
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
K.-P. Schröder
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
*

Abstract

We explore the general astrobiological significance of F-type main-sequence stars with masses between 1.2 and 1.5 M. Special consideration is given to stellar evolutionary aspects due to nuclear main-sequence evolution. DNA is taken as a proxy for carbon-based macromolecules following the paradigm that extraterrestrial biology may be most likely based on hydrocarbons. Consequently, the DNA action spectrum is utilized to represent the impact of the stellar ultraviolet (UV) radiation. Planetary atmospheric attenuation is taken into account based on parameterized attenuation functions. We found that the damage inflicted on DNA for planets at Earth-equivalent positions is between a factor of 2.5 and 7.1 higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If attenuation is considered, smaller factors of damage are obtained in alignment to the attenuation parameters. This work is motivated by earlier studies indicating that the UV environment of solar-type stars is one of the most decisive factors in determining the suitability of exosolar planets and exomoons for biological evolution and sustainability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brack, A. (ed.) (1998). The Molecular Origins of Life: Assembling Pieces of the Puzzle, Cambridge University Press, Cambridge.Google Scholar
Buccino, A.P., Lemarchand, G.A. & Mauas, P.J.D. (2006). Icarus 183, 491503.Google Scholar
Chabrier, G. (2003). Publ. Astron. Soc. Pacific 115, 763795.Google Scholar
Cockell, C.S. (1998). J. Theor. Biol. 193, 717729.Google Scholar
Cockell, C.S. (1999). Icarus 141, 399407.CrossRefGoogle Scholar
Cockell, C.S. (2002). Part III. Electromagnetic Fields, Radiation and Life. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 219232. Springer, Berlin.Google Scholar
Cuntz, M. (2014). Astrophys. J. 780(14), 19.Google Scholar
Cuntz, M., von Bloh, W., Schröder, K.-P., Bounama, C. & Franck, S. (2012). Int. J. Astrobiol. 11, 1523.Google Scholar
Diffey, B.L. (1991). Phys. Med. Biol. 36, 299328.Google Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Science 278, 12731276.Google Scholar
Grenfell, J.L., Stracke, B., von Paris, P., Patzer, B., Titz, R., Segura, A. & Rauer, H. (2007). Plasma Space Sci. 55, 661671.Google Scholar
Güdel, M. (2007). Living Rev. Sol. Phys. 4(3), 137.CrossRefGoogle Scholar
Guinan, E.F. & Ribas, I. (2002). In The Evolving Sun and Its Influence on Planetary Environments, Proc. ASP Conf. Ser. 269, ed. Montesinos, B., Gimenez, A. & Guinan, E.F., pp. 85106. Astronomical Society of the Pacific, San Francisco.Google Scholar
Hauschildt, P.H. (1992). J. Quant. Spectrosc. Radiat. Transfer 47, 433453.Google Scholar
Hauschildt, P.H. & Baron, E. (1999). J. Comput. Appl. Math. 109, 4163.CrossRefGoogle Scholar
Hauschildt, P.H., Allard, F. & Baron, E. (1999). Astrophys. J. 512, 377385.CrossRefGoogle Scholar
Hauschildt, P.H., Barman, T.S., Baron, E. & Allard, F. (2003). In Stellar Atmosphere Modeling, ed. Hubeny, I., Mihalas, D. & Werner, K., pp. 227238. ASP Conf. Ser. 288, San Francisco.Google Scholar
Henderson, S.T. (1977). Daylight and Its Spectrum, 2nd edn, p. 349. Wiley, New York.Google Scholar
Horneck, G. (1995). J. Photochem. Photobiol. B: Biol. 31, 4349.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2010). Int. J. Astrobiol. 9, 273291.Google Scholar
Jones, B.W. (2008). Int. J. Astrobiol. 7, 279292.Google Scholar
Kaltenegger, L. et al. (2010). Astrobiology 10, 103112.Google Scholar
Kaltenegger, L., Miguel, Y. & Rugheimer, S. (2012). Int. J. Astrobiol. 11, 297307.CrossRefGoogle Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108128.CrossRefGoogle Scholar
Kroupa, P. (2002). Science 295(5552), 8291.Google Scholar
Kudritzki, R.-P. & Puls, J. (2000). Annu. Rev. Astron. Astrophys. 38, 613666.Google Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J. & Weiss, W.W. (2003). Astrophys. J. Lett. 598, L121L124.Google Scholar
Lammer, H. et al. (2009). Astron. Astrophys. Rev. 17, 181249.Google Scholar
Lammer, H. et al. (2013). Astrobiology 13, 793813.Google Scholar
Linsky, J.L. (1980). Ann. Rev. Astron. Astrophys. 18, 439488.Google Scholar
Maeder, A. & Meynet, G. (1988). Astron. Astrophys. Suppl. Ser. 76, 411425.Google Scholar
Meadows, V. & Seager, S. (2011). In Exoplanets, ed. Seager, S., pp. 441470. University of Arizona Press, Tucson.Google Scholar
Peak, M.J. & Peak, J.G. (1986). In The Biological Effects of UVA Radiation, ed. Urbach, F. & Gange, R.W., pp. 4256. Praeger, New York.Google Scholar
Pols, O.R., Tout, C.A., Eggleton, P.P. & Han, Z. (1995). Mon. Not. R. Astron. Soc. 274, 964974.CrossRefGoogle Scholar
Pols, O.R., Schröder, K.-P., Hurley, J.R., Tout, C.A. & Eggleton, P.P. (1998). Mon. Not. R. Astron. Soc. 298, 525536.Google Scholar
Rettberg, P. & Rothschild, L.J. (2002). Part III. Electromagnetic Fields, Radiation and Life. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 233243. Springer, Berlin.Google Scholar
Scalo, J. et al. (2007). Astrobiology 7, 85166.CrossRefGoogle Scholar
Schröder, K.-P. & Cuntz, M. (2005). Astrophys. J. Lett. 630, L73L76.Google Scholar
Schröder, K.-P. & Cuntz, M. (2007). Astron. Astrophys. 465, 593601.Google Scholar
Schröder, K.-P. & Smith, R.C. (2008). Mon. Not. R. Astron. Soc. 386, 155163.CrossRefGoogle Scholar
Schröder, K.-P., Pols, O.R. & Eggleton, P.P. (1997). Mon. Not. R. Astron. Soc. 285, 696710.Google Scholar
Segura, A., Krelove, K., Kasting, J.F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M. & Mlawer, E. (2003). Astrobiology 3, 689708.Google Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 13731387.Google Scholar
Setlow, R.B. (1974). Proc. Natl. Acad. Sci. USA 71, 33633366.Google Scholar
Underwood, D.R., Jones, B.W. & Sleep, P.N. (2003). Int. J. Astrobiol. 2, 289299.Google Scholar
Von Bloh, W., Cuntz, M., Schröder, K.-P., Bounama, C. & Franck, S. (2009). Astrobiology 9, 593602.Google Scholar