Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T09:16:32.576Z Has data issue: false hasContentIssue false

Assessment of Hirnantian synglacial eustacy and palaeogeography in a tectonically active setting: the Welsh Basin (UK)

Published online by Cambridge University Press:  19 July 2013

DAVID M. D. JAMES*
Affiliation:
School of Earth and Ocean Sciences, Cardiff University, Wales, UK

Abstract

The Hirnantian stratigraphy of Wales is critically assessed against the global evidence for two major Hirnantian synglacial eustatic lowstands. The evidence for two separate lowstands of relative sea level is locally suggestive in shelf sequences but generally only permissive in the basin. Nowhere can the possible candidate lowstands be separated biostratigraphically and thus basinwide correlation that might rule out local tectonic control is impossible to prove. Consistent with palaeolatitude evidence and a situation far removed from the Gondwana margin, there is no facies evidence (e.g. dropstones) for local glacial conditions and the diamictites are of mass-flow origin. Sequence stratigraphic reasoning proves helpful in the correlation of the basinal succession in Central Wales with the shelf sequences along the Tywi Lineament and the Variscan Front, and suggests that the first appearance of Normalograptus persculptus in Wales does not correspond with the base of the persculptus Biozone. Extensive new palaeocurrent data and sedimentological restudy is combined with review of earlier knowledge to argue for significant revisions to previous palaeogeographic maps for ‘generalized lowstand conditions’, notably along the Bala Lineament, the Variscan Front and the Central Wales Inliers.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksu, A. E. & Hiscott, R. N. 1992. Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope. Sedimentology 39, 193206.Google Scholar
Alvaro, J. J. & Van Vliet-Lanoe, B. 2009. Late Ordovician carbonate productivity and glacio-marine record under quiescent and active extensional tectonics in NE Spain. In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography. (ed. Bassett, M. G.), pp. 117–39. Geological Society of London, Special Publication no. 325.Google Scholar
Andrew, G. 1925. The Llandovery rocks of Garth (Breconshire). Quarterly Journal of the Geological Society of London 81, 389406.CrossRefGoogle Scholar
Anketell, J. M. 1987. On the geological succession and structure of South-Central Wales. Geological Journal 22, 155–65.Google Scholar
Bassett, D. A. 1972. Wales. In A Correlation of Ordovician Rocks in the British Isles (eds Williams, A., Strachan, I., Bassett, D. A., Dean, W. T., Ingham, J. K., Wright, A. D. & Whittington, H. B.), pp. 1439. Geological Society of London, Special Report no. 3.Google Scholar
Bassett, D. A., Whittington, H. B. & Williams, A. 1966. The stratigraphy of the Bala district, Merionethshire. Quarterly Journal of the Geological Society of London 122, 219–71.CrossRefGoogle Scholar
Bergman, K. M. & Walker, R. G. 1987. The importance of sea-level fluctuations in the formation of linear conglomerate bodies; Carrot Creek Member of Cardium Formation, Cretaceous Western Interior Seaway, Alberta, Canada. Journal of Sedimentary Petrology 57, 651–65.Google Scholar
Bergstrom, S. M., Saltzman, M. M. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine 143, 657–78.Google Scholar
Bennett, M. R., Doyle, P., Mather, A. E. & Woodfin, J. L. 1994. Testing the climatic significance of dropstones; an example from southeast Spain. Geological Magazine 131, 848.Google Scholar
Berry, W. B. N. & Boucot, A. J. 1973. Glacio-eustatic control of late Ordovician-early Silurian platform sedimentation and faunal changes. Geological Society of America Bulletin 84, 275–84.2.0.CO;2>CrossRefGoogle Scholar
Blackett, E., Page, A., Zalasiewicz, J., Williams, M., Rickards, R. B. & Davies, J. R. 2009. A refined graptolite stratigraphy for the Late Ordovician – Early Silurian of Central Wales. Lethaia 42, 8396.CrossRefGoogle Scholar
Brenchley, P. J. 1992. Ashgill. In Atlas of Palaeogeography and Lithofacies (eds Cope, J. C. W., Ingham, J. K. & Rawson, P. F.), pp. 32–6. Geological Society of London, Memoir no. 13.Google Scholar
Brenchley, P. J. 1993. The Ordovician of the south Berwyn Hills. In Geological Excursions in Powys, Central Wales (eds Woodcock, N. H. & Bassett, M. G.), pp. 3950. Cardiff: University of Wales Press, National Museum of Wales.Google Scholar
Brenchley, P. J. & Cullen, B. 1984. The environmental distribution of associations belonging to the Hirnantia fauna – evidence from North Wales and Norway. In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 113–25. Palaeontological Contributions from the University of Oslo, no. 295. Universiteitsforlaget.Google Scholar
Brenchley, P. J., Marshall, J. D., Harper, D. A. T., Buttler, C. J. & Underwood, C. J. 2006 a. A late Ordovician (Hirnantian) karstic surface in a submarine channel, recording glacio-eustatic sea-level changes; Meifod, central Wales. Geological Journal 41, 122.Google Scholar
Brenchley, P. J. & Newall, G. 1980. A facies analysis of Upper Ordovician regressive sequences in the Oslo region, Norway – a record of glacio-eustatic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 31, 138.CrossRefGoogle Scholar
Brenchley, P. J., Rushton, A. W. A., Howells, M. F. & Cave, R. 2006 b. Cambrian and Ordovician: the early Palaeozoic tectonostratigraphic evolution of the Welsh Basin, Midland and Monian Terranes of Eastern Avalonia. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp. 2574. London: The Geological Society.CrossRefGoogle Scholar
Brenchley, P. J. & Storch, P. 1989. Environmental changes in the Hirnantian (upper Ordovician) of the Prague Basin, Czechoslovakia. Geological Journal 24, 165–81.Google Scholar
British Geological Survey, 1994. Bilingual Geological Map of Wales 1:250,000 scale. Keyworth: British Geological Survey.Google Scholar
Brodzikowski, K. & van Loon, A. J. 1991. Glacigenic Sediments. Developments in Sedimentology no. 49. Amsterdam: Elsevier, 674 pp.Google Scholar
Cave, R. 1992. Llandovery. In Atlas of Palaeogeography and Lithofacies (eds Cope, J. C. W., Ingham, J. K. & Rawson, P. F.), pp. 3741. Geological Society of London, Memoir no. 13.Google Scholar
Cave, R., Evans, J. A. & Campbell, S. D. G. 1992. Garn Prys: a mid Silurian canyon, feeder to the Denbigh Grits of North Wales. Geological Journal 27, 301–15.Google Scholar
Cave, R. & Hains, B. A. 1986. The geology of the country around Aberystwyth and Machynlleth. Memoir of the British Geological Survey, Sheet 163 (England and Wales).Google Scholar
Chen, X., Rong, J., Fan, J., Zhan, R., Mitchell, C. E., Harper, D. A. T., Melchin, M. J., Peng, P., Finney, S. C. & Wang, X. 2006. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes 29, 183–96.Google Scholar
Cherns, L., Cocks, L. R. M., Davies, J. R., Hillier, R. D., Waters, R. A. & Williams, M. 2006. Silurian: the influence of extensional tectonics and sea-level changes on sedimentation in the Welsh Basin and on the Midland Platform. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp. 75102. London: The Geological Society.Google Scholar
Cherns, L. & Wheeley, J. R. 2007. A pre-Hirnantian (Late Ordovician) interval of global cooling – the Boda event re-assessed. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 449–60.Google Scholar
Cherns, L. & Wheeley, J. R. 2009. Early Palaeozoic cooling events: peri-Gondwana and beyond. In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. Bassett, M. G.), pp. 257–78. Geological Society of London, Special Publication no. 325.Google Scholar
Cocks, L. R. M. & Fortey, R. A. 2009. Avalonia: a long-lived terrane in the Lower Palaeozoic? In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. Bassett, M. G.), pp. 141–55. Geological Society of London, Special Publication no. 325.Google Scholar
Cocks, L. R. M. & Price, D. 1975. The biostratigraphy of the upper Ordovician and lower Silurian of south-west Dyfed, with comments on the Hirnantia fauna. Palaeontology 18, 703–24.Google Scholar
Craig, J. 1987. The structure of the Llangranog Lineament, West Wales: a Caledonian transpression zone. Geological Journal 22, 167–81.CrossRefGoogle Scholar
Cronin, B., Owen, D., Hartley, A. & Kneller, B. 1998. Slumps, debris flows and sandy deep-water channel systems: implications for the application of sequence stratigraphy to deep water clastic sediments. Journal of the Geological Society, London 155, 429–32.Google Scholar
Cummins, W. A. 1969. Patterns of sedimentation in the Silurian rocks of Wales. In The Precambrian and Lower Palaeozoic Rocks of Wales (ed. Wood, A.), pp. 219–37. Cardiff: University of Wales Press.Google Scholar
Dahlqvist, P. 2004. Late Ordovician (Hirnantian) depositional pattern and sea-level change in shallow marine to shoreface cycles in central Sweden. Geological Magazine 141, 605–16.Google Scholar
Davies, D. A. B. 1936. The Ordovician rocks of the Trefriw district (North Wales). Quarterly Journal of the Geological Society of London 92, 6287.Google Scholar
Davies, K. A. 1933. The geology of the country between Abergwesyn (Breconshire) and Pumpsaint (Carmarthenshire). Quarterly Journal of the Geological Society of London 89, 178201.Google Scholar
Davies, K. A. & Platt, J. I. 1933. The conglomerates and grits of the Bala and Valentian of the district between Rhayader (Radnorshire) and Llansawel (Breconshire). Quarterly Journal of the Geological Society of London 89, 202–18.Google Scholar
Davies, J. R., Fletcher, C. J. N., Waters, R. A., Wilson, D., Woodhall, D. G. & Zalasiewicz, J. A. 1997. The geology of the country around Rhayader and Llanilar. Memoir of the British Geological Survey, Sheets 178 and 179 (England and Wales), 268 pp.Google Scholar
Davies, J. R., Sheppard, T. H., Waters, R. A. & Wilson, D. 2006. Geology of the Llangranog district – a brief explanation of the geological map. Sheet Explanations of the British Geological Survey, Sheet 194 (England and Wales).Google Scholar
Davies, J. R., Waters, R. A., Williams, M., Wilson, D., Schofield, D. I. & Zalasiewicz, J. A. 2009. Sedimentary and faunal events revealed by a revised correlation of post-glacial Hirnantian (Late Ordovician) strata in the Welsh Basin. Geological Journal 44, 322–40.Google Scholar
Dewey, J. F. & Strachan, R. A. 2003. Changing Silurian – Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. Journal of the Geological Society, London 160, 219–29.Google Scholar
Elles, G. L. 1909. The relation of the Ordovician and Silurian rocks of Conway (North Wales). Quarterly Journal of the Geological Society of London 65, 169–94.CrossRefGoogle Scholar
Elverhoi, A. & Henrich, R. 1996. Glaciomarine environments, ‘ancient glaciomarine sediments’. In Past Glacial Environments – Sediments, Forms and Techniques (ed. Menzies, J.), pp. 179211. Glacial Environments Vol. 2. Oxford: Butterworth Heinemann.Google Scholar
Evans, W. D. 1945. The geology of the Prescelly hills, North Pembrokeshire. Quarterly Journal of the Geological Society of London 101, 89110.Google Scholar
Eyles, C. H. 1987. Glacially influenced submarine-channel sedimentation in the Yakataga Formation, Middleton Islands, Alaska. Journal of Sedimentary Petrology 57, 1004–17.Google Scholar
Eyles, N. & Eyles, C. H. 1989. Glacially-influenced deep-marine sedimentation of the late Precambrian Gaskiers Formation, Newfoundland, Canada. Sedimentology 36, 601–20.CrossRefGoogle Scholar
Fan, J., Peng, P. & Melchin, M. J. 2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 160–9.CrossRefGoogle Scholar
Fitches, W. R. & Campbell, S. D. G. 1987. Tectonic evolution of the Bala Lineament in the Welsh Basin. Geological Journal 22, 131–53.CrossRefGoogle Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parkes, M. A., Rushton, A. W. A. & Woodcock, N. H. 2000. A Revised Correlation of Ordovician Rocks in the British Isles. Geological Society of London, Special Report no. 24.Google Scholar
Fulcher, L. W. 1892. Note on the composition and structure of the Hirnant Limestone. Geological Magazine 29, 114–17.Google Scholar
Gawthorpe, R. L., Sharp, I., Underhill, J. R. & Gupta, S. 1997. Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology 25, 795–8.Google Scholar
Gray, J. M. 1996. Glacio-isostacy, glacio-eustacy and relative sea-level change. In Past Glacial Environments – Sediments, Forms and Techniques (ed. Menzies, J.), pp. 315–33. Glacial Environments Vol. 2. Oxford: Butterworth Heinemann, Oxford.Google Scholar
Hart, B. S. & Plint, A. G. 1989. Gravelly shoreface deposits: a comparison of modern and ancient facies sequences. Sedimentology 36, 551–7.Google Scholar
Hambrey, M. J. 1985. The Late Ordovician-Early Silurian glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 273–89.Google Scholar
Helland-Hansen, W. & Gjelberg, J. G. 1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology 92, 3152.Google Scholar
Hendricks, E. M. L. 1926. The Bala-Silurian succession in the Llangranog district (south Cardiganshire). Geological Magazine 63, 121–39.CrossRefGoogle Scholar
Henriet, J-P. & Meinert, J. (eds). 1998. Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication no.137, 328 pp.Google Scholar
Hiller, N. 1981. The Ashgill rocks of the Glyn Ceiriog district, North Wales. Geological Journal 16, 181200.Google Scholar
Hillier, R. D. 2002. Depositional environment and sequence architecture of the Silurian Coralliferous Group, Southern Pembrokeshire, UK. Geological Journal 37, 247–68.Google Scholar
Hillier, R. D. & Williams, B. P. J. 2006. The alluvial Old Red Sandstone: fluvial basins. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp. 155–71. London: The Geological Society.Google Scholar
Howells, M. F., Reedman, A. J. & Campbell, S. D. G. 1991. Ordovician (Caradoc) Marginal Basin Volcanism in Snowdonia (North-West Wales). London: H.M.S.O. for the British Geological Survey.Google Scholar
James, D. M. D. 1971. Petrography of the Plynlimon Group, West Central Wales. Sedimentary Geology 6, 255–70.CrossRefGoogle Scholar
James, D. M. D. 1972. Sedimentation across an intra-basinal slope: the Garnedd-wen Formation (Ashgillian), West Central Wales. Sedimentary Geology 7, 291307.Google Scholar
James, D. M. D. 1973. The Garnedd-wen Formation (Ashgillian) of the Towyn – Abergynolwyn district, Merionethshire. Geological Magazine 110, 145–52.Google Scholar
James, D. M. D. 1983. Sedimentation of deep-water slope base and inner fan deposits – the Drosgol Formation (Ashgill), West Central Wales. Sedimentary Geology 31, 2140.Google Scholar
James, D. M. D. 1985. Relative sea-level movements, palaeo-horizontals and the depositional relationships of Upper Ordovician sediments between Corris and Bala, mid Wales. Mercian Geologist 10, 1926.Google Scholar
James, D. M. D. 1987 a. Tectonics and sedimentation in the Lower Palaeozoic back-arc basin of S. Wales, U.K.; some quantitative aspects of basin development. Norske Geologiske Tidsskrif 67, 419–28.Google Scholar
James, D. M. D. 1987 b. Ashgill sediments between Plynlimon and Machynlleth, West Central Wales. Mercian Geologist 10, 265–79.Google Scholar
James, D. M. D. 1991 a. A late Ordovician/early Silurian non-depositional slope and perched rollover basin along the Tywi Anticline, Mid Wales. Geological Journal 26, 726.Google Scholar
James, D. M. D. 1991 b. Depositional and tectonic relationships of Upper Ordovician and Lower Silurian Strata around Dinas Mawddwy, Mid-Wales. Geological Journal 26, 307–16.Google Scholar
James, D. M. D. 1997. Llanvirn-Llandovery activity on the Llangranog Lineament in southwest Ceredigion, Wales. Mercian Geologist 14, 6878.Google Scholar
James, D. M. D. & James, J. 1969. The influence of deep fractures on some areas of Ashgillian-Llandoverian sedimentation in Wales. Geological Magazine 106, 562–82.Google Scholar
Jehu, R. M. 1926. The geology of the district around Towyn and Abergynolwyn (Merioneth). Quarterly Journal of the Geological Society of London 82, 465–89.Google Scholar
Jiang, L. & Garwood, R. W. 1996. Three-dimensional simulations of overflows on continental slopes. Journal of Physical Oceanography 26, 1214–33.Google Scholar
Jones, O. T. 1909. The Hartfell-Valentian succession in the district around Plynlimon and Pont Erwyd (North Cardiganshire). Quarterly Journal of the Geological Society of London 65, 463535.Google Scholar
Jones, O. T. 1925. The geology of the Llandovery district Part 1 – the southern area. Quarterly Journal of the Geological Society of London 81, 344–88.Google Scholar
Jones, O. T. 1938. On the evolution of a geosyncline (Anniversary Address). Quarterly Journal of the Geological Society of London 94, lxcx.Google Scholar
Jones, O. T. & Pugh, W. J. 1935. The geology of the districts around Machynlleth and Aberystwyth. Proceedings of the Geologists’ Association 46, 247300.CrossRefGoogle Scholar
Jones, W. D. V. 1945. The Valentian succession around Llanidloes, Montgmeryshire. Quarterly Journal of the Geological Society of London 100 (for 1944), 309–32.Google Scholar
Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T. & Nõlvak, J. 2011. Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geological Journal 46, 464–77.Google Scholar
Karner, G. D. & Driscoll, N. W. 1997. Three-dimensional interplay of advective and diffusive processes in the generation of sequence boundaries. Journal of the Geological Society, London 154, 443–9.CrossRefGoogle Scholar
Kelling, G. & Woollands, M. A. 1969. The stratigraphy and sedimentation of the Llandoverian rocks of the Rhayader district. In The Precambrian and Lower Paleozoic rocks of Wales (ed. Wood, A.), pp. 255–82. Cardiff: University of Wales Press.Google Scholar
King, W. B. R. 1923. The Upper Ordovician rocks of the south-western Berwyn Hills. Quarterly Journal of the Geological Society of London 79, 487507.Google Scholar
King, W. B. R. 1928. The geology of the district around Meifod (Montgomeryshire). Quarterly Journal of the Geological Society of London 84, 671702.CrossRefGoogle Scholar
Le Heron, D. P. & Craig, J. 2008. First-order reconstructions of a Late Ordovician Saharan ice sheet. Journal of the Geological Society, London 165, 1929.Google Scholar
Leithold, E. L. & Bourgeois, J. 1984. Characteristics of coarse-grained sequences deposited in nearshore, wave-dominated environments – examples from the Miocene of south-west Oregon. Sedimentology 31, 749–75.Google Scholar
Leng, M. J. & Cave, R. 1993. The Machynlleth and Llanidloes areas. In Geological Excursions in Powys, Central Wales (Woodcock, N. H. & Bassett, M. G.), pp. 129–54. Cardiff: University of Wales Press, National Museum of Wales.Google Scholar
Leng, M. J. & Evans, J. A. 1994. Provenance of late Ashgill (Hirnantian) fine-grained sediments and pebbles in the Welsh Basin: a Nd and Sr isotope study. Geological Journal 29, 19.Google Scholar
Loydell, D. K. & Cave, R. 1996. The Llandovery-Wenlock boundary and related stratigraphy in eastern mid-Wales with special reference to the Banwy River section. Newsletters on Stratigraphy 34, 3964.Google Scholar
Muto, T., Steel, R. J. & Swenson, J. B. 2007. Autostratigraphy: a framework norm for genetic stratigraphy. Journal of Sedimentary Research 77, 212.Google Scholar
Nemec, W. & Steel, R. J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In Sedimentology of Gravels and Conglomerates (eds Koster, E. H. & Steel, R. J.), pp. pp. 131. Canadian Society of Petroleum Geologists, Memoir no.10.Google Scholar
Page, A., Zalasiewicz, J., Williams, M. & Popov, L. 2007. Were transgressive black shales a negative feed-back modulating glacioeustacy in the Early Palaeozoic Icehouse? In Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 123–56. Micropalaeontological Society Special Publications. Bath: The Geological Society Publishing House.Google Scholar
Pickering, K. T. & Corregidor, J. 2005. Mass-transport complexes (MTCs) and tectonic control on basin-floor submarine fans, Middle Eocene, South Spanish Pyrenees. Journal of Sedimentary Research 75, 761–83.Google Scholar
Postma, G & Nemec, W. 1990. Regressive and transgressive sequences in a raised Holocene gravelly beach, southwest Crete. Sedimentology 37, 907–20.Google Scholar
Powell, C. M. 1989. Structural controls on Palaeozoic basin evolution and inversion in southwest Wales. Journal of the Geological Society, London 146, 439–46.CrossRefGoogle Scholar
Pratt, W. T., Woodhall, D. G. & Howells, M. F. 1995. Geology of the Country Around Cadair Idris. Memoir for 1:50 000 geological sheet 149 (England and Wales). London: British Geological Survey, 111 pp.Google Scholar
Price, D. & Magor, P. M. 1984. The ecological significance of variation in the generic composition of Rawtheyan (late Ordovician) trilobite faunas from North Wales, U.K. Geological Journal 19, 187200.Google Scholar
Pugh, W. J. 1923. The geology of the district around Corris and Aberllefenni. Quarterly Journal of the Geological Society of London 79, 508–41.Google Scholar
Pugh, W. J. 1928. The geology of the district around Dinas Mawddwy (Merioneth). Quarterly Journal of the Geological Society of London 84, 345–81.Google Scholar
Pugh, W. J. 1929. The geology of the district between Llanymawddwy and Llanuwchllyn (Merioneth). Quarterly Journal of the Geological Society of London 85, 242306.Google Scholar
Rasmussen, C. M. O. & Harper, D. A. T. 2011. Interrogation of distributional data for the End Ordovician crisis interval: where did the disaster strike? Geological Journal 46, 478500.Google Scholar
Ricketts, B. D. & Evenchick, C. A. 1999. Shelfbreak gullies; products of sea-level lowstand and sediment failure: examples from Bowser Basin, northern British Columbia. Journal of Sedimentary Petrology 69, 1232–40.Google Scholar
Robardet, M. & Doré, F. 1988. The late Ordovician diamictic from southwest Europe: North Gondwana glaciomarine deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 1931.Google Scholar
Roberts, B. 1967. Succession and structure in the Llwyd Mawr Syncline, Caernarvonshire North Wales. Geological Journal 5, 369–90.Google Scholar
Roberts, R. O. 1929. The geology of the district around Abbey Cwmhir (Radnorshire). Quarterly Journal of the Geological Society of London 85, 651–76.Google Scholar
Rong, J-Y. & Harper, D. A. T. 1999. Brachiopod survival and recovery from the latest Ordovician mass extinctions in South China. Geological Journal 34, 321–48.Google Scholar
Ruddiman, W. F. & Bowles, F. A. 1976. Early interglacial bottom-current sedimentation on the eastern Reykjanes Ridge. Marine Geology 21, 191210.Google Scholar
Santzen-Baker, I. 1972. Stratigraphical relationships and sedimentary environments of the Silurian-early Old Red Sandstone of Pembrokeshire. Proceedings of the Geologists’ Association 83, 139–64.Google Scholar
Schofield, D. I., Davies, J. R., Jones, N. S., Leslie, A. B., Waters, R. A., Williams, M., Wilson, D., Venus, J. & Hillier, R. D. 2009. Geology of the Llandovery district – a brief explanation of the geological map. Sheet Explanations of the British Geological Survey, Sheet 212 (England and Wales).Google Scholar
Schofield, D. I., Davies, J. R., Waters, R. A., Wilby, P. R., Williams, M. & Wilson, D. 2004. Geology of the Builth Wells district – a brief explanation of the geological map. Sheet Explanations of the British Geological Survey, Sheet 196 (England and Wales).Google Scholar
Selleck, B. W., Carr, P. F. & Jones, B. G. 2007. A review and synthesis of Glendonites (pseudomorphs after Ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions. Journal of Sedimentary Research 77, 980–91.Google Scholar
Smith, R. 2004. Silled sub-basins to connected tortuous corridors: sediment distribution systems on topographically complex sub-aqueous slopes. In Confined Turbidite Systems (eds Lomas, S. A. & Joseph, P.), pp. 2343. Geological Society of London, Special Publication no. 222.Google Scholar
Soper, N. J. & Woodcock, N. H. 2003. The lost Lower Old Red Sandstone of England and Wales: a record of post-Iapetan flexure or early Devonian transtension? Geological Magazine 140, 627–47.Google Scholar
Strahan, A., Cantrill, T. C., Dixon, E. E. L. & Thomas, H. H. 1909. The geology of the South Wales Coalfield. Part X. The county around Carmarthen. Memoir of the Geological Survey of Great Britain, Sheet 229 (England and Wales).Google Scholar
Strahan, A., Cantrill, T. C., Dixon, E. E. L., Thomas, H. H. & Jones, O. T. 1914. The geology of the South Wales Coalfield. Part X1. The country around Haverfordwest. Memoir of the Geological Survey of Great Britain, Sheet 228 (England and Wales).Google Scholar
Stevenson, I. P. 1971. The Ordovician rocks of the country between Dwygyfylchi and Dolgarrog, Caernarvonshire. Proceedings of the Yorkshire Geological Society 38, 517–48.Google Scholar
Storch, P. 1990. Upper Ordovician – lower Silurian sequences of the Bohemian Massif, central Europe. Geological Magazine 127, 225–39.Google Scholar
Storch, P. 2006. Facies development, depositional settings and sequence stratigraphy across the Ordovician – Silurian boundary: a new perspective from the Barrandian area of the Czech Republic. Geological Journal 41, 163–92.Google Scholar
Strong, N. & Paola, C. 2008. Valleys that never were: time surfaces versus stratigraphic surfaces. Journal of Sedimentary Research 78, 579–93.CrossRefGoogle Scholar
Sutcliffe, O. E., Dowdswell, J. A., Whittington, R. J., Theron, J. N. & Craig, J. 2000. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit. Geology 28, 967–90.Google Scholar
Taylor, K. G., Simo, J. A., Yocum, D. & Leckie, D. A. 2002. Stratigraphic significance of ooidal ironstones from the Cretaceous Western Interior Seaway: the Peace River Formation, Alberta, Canada, and the Castlegare Sandstone, Utah, U.S.A. Journal of Sedimentary Research 72, 316–27.Google Scholar
Toghill, P. 1992. The Shelveian event, a late Ordovician tectonic episode in Southern Britain (Eastern Avalonia). Proceedings of the Geologists’ Association 103, 31–5.Google Scholar
Underwood, C. J., Crowley, S. F., Marshall, J. D. & Brenchley, P. J. 1997. High-Resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob's Linn, Scotland) and its global correlation. Journal of the Geological Society, London 154, 709–18.Google Scholar
Vandenbrouke, T. R. A., Hennissen, J., Zalasiewicz, J. A. & Verniers, J. 2008. New chitinozoans from the historical type area of the Hirnantian Stage and additional key sections in the Wye Valley, Wales, UK. Geological Journal 43, 397414.Google Scholar
van de Kamp, P. C. 2010. Arkose, sub-arkose, quartz sand, and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. Journal of Sedimentary Research 80, 895918.Google Scholar
van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S. & Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In Sea Level Changes, An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. Van, Ross, C. A. & Kendall, C. G. St C.), pp. 3945. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42.Google Scholar
Visser, J. N. J. 1997. Deglaciation sequences in the Permo-Carboniferous Karoo and Kalahari basins of southern Africa: a tool in the analysis of cyclic glaciomarine basin fills. Sedimentology 44, 507–21.Google Scholar
Walker, R. G. & Plint, A. G. 1992. Wave and storm-dominated shallow marine systems. In Facies Models – Response to Sea Level Change (eds Walker, R. G. & James, N. P.), pp. 219–38. Geological Association of Canada.Google Scholar
Warren, P. T., Price, D., Nutt, M. J. C. & Smith, E. G. 1984. Geology of the country around Rhyl and Denbigh Memoir of the Geological Survey of Great Britain, Sheets 95 and 107 and parts of sheets 94 and 106 (England and Wales).Google Scholar
Went, D. J. 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52, 693713.Google Scholar
Wilby, P. R., Schofield, D. I., Wilson, D., Aspden, J. A., Burt, C. E., Davies, J. R., Hall, M., Jones, N. S. & Venus, J. 2007. Geology of the Newcastle Emlyn district – a brief explanation of the geological map. Sheet Explanations of the British Geological Survey, Sheet 211 (England and Wales).Google Scholar
Williams, A., Strachan, I., Bassett, D. A., Dean, W. T., Ingham, J. K., Wright, A. D. & Whittington, H. B. 1972. A Correlation of Ordovician Rocks in the British Isles. Geological Society of London, Special Report 3, 74 pp.Google Scholar
Williams, A. & Wright, A. D. 1981. The Ordovician – Silurian Boundary in the Garth area of southwest Powys, Wales. Geological Journal 22, 199209.Google Scholar
Wills, L. J. & Smith, B. 1922. The Lower Palaeozoic rocks of the Llangollen district. Quarterly Journal of the Geological Society of London 78, 176226.CrossRefGoogle Scholar
Woodcock, N. H. 1984. Early Palaeozoic sedimentation and tectonics in Wales. Proceedings of the Geologists’ Association 132, 399415.Google Scholar
Woodcock, N. H., Butler, A. J., Davies, J. R. & Waters, R. A. 1996. Sequence stratigraphical analysis of late Ordovician and early Silurian depositional systems in the Welsh Basin: a critical assessment. In Sequence Stratigraphy in British Geology (eds Hesselbo, S. P. & Parkinson, D. N.), pp. 197208. Geological Society of London, Special Publication no.103.Google Scholar
Woodcock, N. H. & Smallwood, S. D. 1987. Late Ordovician tidal environments due to glacio-eustatic regression: Scrach Formation, Mid Wales. Journal of the Geological Society, London 144, 393400.Google Scholar
Woodcock, N. H. & Soper, N. J. 2006. The Acadian Orogeny: the mid-Devonian phase of deformation that formed slate belts in England and Wales. In The Geology of England and Wales (eds Brenchley, P. J. & Rawson, P. F.), pp 131–46. London: The Geological Society.Google Scholar
Wyatt, A. R. 1995. Late Ordovician extinctions and sea-level change. Journal of the Geological Society, London 152, 899902.Google Scholar
Yoshida, S., Steel, R. J. & Dalrymple, R. W. 2007. Changes in depositional processes – an ingredient in a new generation of sequence-stratigraphic models. Journal of Sedimentary Research 77, 447–60.Google Scholar
Zeigler, A. M., Cocks, L. R. M. & McKerrow, W. S. 1968. The Llandovery transgression of the Welsh Borderland. Palaeontology 11, 736–82.Google Scholar