Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T05:03:23.723Z Has data issue: false hasContentIssue false

High performances and low variability of semiconducting-SWCNT thin-film-transistors achieved by shortening tube lengths

Published online by Cambridge University Press:  13 March 2014

Takeshi Saito
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes, Tsukuba, Ibaraki, 305-8565, Japan
Shigekazu Ohmori
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes, Tsukuba, Ibaraki, 305-8565, Japan
Kazuki Ihara
Affiliation:
Technology Research Association for Single Wall Carbon Nanotubes, Tsukuba, Ibaraki, 305-8565, Japan NEC Smart Energy Research Laboratories, Tsukuba, Ibaraki, 305-8501, Japan
Yuki Kuwahara
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan Technology Research Association for Single Wall Carbon Nanotubes, Tsukuba, Ibaraki, 305-8565, Japan
Fumiyuki Nihey
Affiliation:
Technology Research Association for Single Wall Carbon Nanotubes, Tsukuba, Ibaraki, 305-8565, Japan NEC Smart Energy Research Laboratories, Tsukuba, Ibaraki, 305-8501, Japan
Get access

Abstract

The tube-length distribution in the semiconducting single-wall carbon nanotube (s-SWCNT) ink extracted by the electric-field-induced layer formation (ELF) method was characterized by atomic force microscopy, which revealed that the nonionic surfactant Brij 700 adopted in ELF causes the significant and homogeneous shortening of SWCNTs compared with sodium cholate that is frequently used for the dispersion of SWCNTs as an ionic surfactant. It was found that the shortened s-SWCNTs in the semiconducting ink positively effect on the uniformity of performance among the s-SWCNT thin-film transistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cao, Q. and Rogers, J. A., Adv. Mater., 2009, 21, 29.CrossRefGoogle Scholar
Rouhi, N., Jain, D., Zand, K. and Burke, P. J., Adv. Mater., 2011, 23, 94.CrossRefGoogle Scholar
Numata, H., Ihara, K., Saito, T., and Nihey, F., Appl. Phys. Exp., 2012, 5, 055102.CrossRefGoogle Scholar
Ihara, K., Endoh, H., Saito, T. and Nihey, F., J. Phys. Chem. C, 2011, 115, 22827.CrossRefGoogle Scholar
Asada, Y., Miyata, Y., Shiozawa, K., Ohno, Y., Kitaura, R., Mizutani, T. and Shinohara, H., J. Phys. Chem. C, 2010, 115, 270.CrossRefGoogle Scholar
Asada, Y., Ohmori, S., Nihey, F., Shinohara, H. and Saito, T., Adv. Mater., 2011, 23, 4631.CrossRefGoogle Scholar
Ishida, M. and Nihey, F., Appl. Phys. Lett., 2008, 92, 163507.CrossRefGoogle Scholar
Saito, T., Ohshima, S., Okazaki, T., Ohmori, S., Yumura, M. and Iijima, S., J. Nanosci. Nanotechnol., 2008, 8, 6153.CrossRefGoogle Scholar
Ohmori, S., Saito, T., Carbon, 2012, 50, 4932.CrossRefGoogle Scholar
Duesberg, G. S., Muster, J., Krstic, V., Krstic, M., Burghard, M., Roth, S., Appl. Phys. A, 1998, 67, 117.CrossRefGoogle Scholar
Franklin, A. D., Tulevski, G. S., Han, S-J., Shahrjerdi, D., Cao, Q., Chen, H-Y., Wong, H.-S. P., Haensch, W., ACS nano, 2012, 6, 1109.CrossRefGoogle Scholar
McGill, S. A., Rao, S. G., Manandhar, P., Xiong, P., Hong, S., Appl. Phys. Lett., 2006, 89, 163123.CrossRefGoogle Scholar
Hu, P., Zhang, C., Fasoli, A., Scardaci, V., Pisana, S., Hasan, T., Robertson, J., Milne, W. I., Ferrari, A. C., Physica E, 2008, 40, 2278.CrossRefGoogle Scholar
Tanaka, T., Jin, H., Miyata, Y., Fujii, S., Suga, H., Naitoh, Y., Minari, T., Miyadera, T., Tsukagoshi, K. and Kataura, H., Nano Lett., 2009, 9, 1497.CrossRefGoogle Scholar
Yu, W. J., Lee, S. Y., Chae, S. H., Perello, D., Han, G. H., Yun, M. and Lee, Y. H., Nano Lett., 2011, 11, 1344.CrossRefGoogle Scholar
Asada, Y., Miyata, Y., Ohno, Y., Kitaura, R., Sugai, T., Mizutani, T. and Shinohara, H., Adv. Mater., 2010, 22, 2698.CrossRefGoogle Scholar
Timmermans, M. Y., Grigoras, K., Nasibulin, A. G., Hurskainen, V., Franssila, S., Ermolov, V. and Kauppinen, E. I., Nanotechnol., 2011, 22, 065303.Google Scholar
Vijayaraghavan, A., Timmermans, M. Y., Grigoras, K., Nasibulin, A. G., Kauppinen, E. I and Krupke, R., Nanotechnol., 2011, 22, 265715.CrossRefGoogle Scholar
Takagi, Y. and Okada, S., Phys. Rev. B, 2011, 84, 035406.Google Scholar
Sun, D., Timmermans, M. Y., Tian, Y., Nasibulin, A. G., Kauppinen, E. I., Kishimoto, S., Mizutani, T. and Ohno, Y., Nature Nanotechnol., 2011, 6, 156.CrossRefGoogle Scholar
Lee, S. Y., Lee, S. W., Kim, S. M., Yu, W. J., Jo, Y. W. and Lee, Y. H., ACS Nano, 2011, 5, 2369.CrossRefGoogle Scholar