Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T03:54:58.923Z Has data issue: false hasContentIssue false

Lyapunov exponents in Hilbert geometry

Published online by Cambridge University Press:  03 December 2012

MICKAËL CRAMPON*
Affiliation:
Universidad de Santiago de Chile, Av. El Belloto 3580, Estación Central, Santiago de Chile, Chile (email: mickael.crampon@usach.cl)

Abstract

We study the Lyapunov exponents of the geodesic flow of a Hilbert geometry. We prove that all of the information is contained in the shape of the boundary at the endpoint of the chosen orbit. We have to introduce a regularity property of convex functions to make this link precise. As a consequence, Lyapunov manifolds tangent to the Lyapunov splitting appear very easily. All of this work can be seen as a consequence of convexity and the flatness of Hilbert geometries.

Type
Research Article
Copyright
©2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ale39]Alexandrov, A. D.. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningrad State Univ. Ann. [Uchenye Zapiski] Math. Ser. 6 (1939), 335.Google Scholar
[BBV]Berck, G., Bernig, A. and Vernicos, C.. Volume entropy of Hilbert geometries. Pacific J. Math. 245(2) (2010), 201225.Google Scholar
[Ben60]Benzécri, J.-P.. Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88 (1960), 229332.Google Scholar
[Ben03]Benoist, Y.. Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. Inst. Hautes Études Sci. 97 (2003), 181237.Google Scholar
[Ben04]Benoist, Y.. Convexes divisibles 1. Algebraic Groups and Arithmetic (Tata Institute of Fundamental Research Studies in Mathematics, 17). Tata Institute, Mumbai, 2004, pp. 339374.Google Scholar
[CP04]Colbois, B. and Verovic, P.. Hilbert geometry for strictly convex domains. Geom. Dedicata 105 (2004), 2942.CrossRefGoogle Scholar
[Cra]Crampon, M.. The boundary of a divisible convex set. In preparation.Google Scholar
[Cra09]Crampon, M.. Entropies of strictly convex projective manifolds. J. Mod. Dyn. 3(4) (2009), 511547.Google Scholar
[Cra11]Crampon, M.. Dynamics and entropies of Hilbert metrics. PhD Thesis, Université de Strasbourg, 2011.Google Scholar
[Fou86]Foulon, P.. Géométrie des équations différentielles du second ordre. Ann. Inst. Henri Poincaré 45 (1986), 128.Google Scholar
[Fou92]Foulon, P.. Estimation de l’entropie des systèmes lagrangiens sans points conjugués. Ann. Inst. H. Poincaré Phys. Théor. 57(2) (1992), 117146, with an appendix, ‘About Finsler geometry’ (in English).Google Scholar
[Ose68]Osedelec, V. I.. A multiplicative ergodic theorem. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar