Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T02:23:31.577Z Has data issue: false hasContentIssue false

Broadband Cavity Enhanced Absorption Spectroscopy: A New Approach to Search for DIB Carriers

Published online by Cambridge University Press:  21 February 2014

A. J. Walsh
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, NL 2300 RA Leiden, The Netherlands. email: linnartz@strw.leidenuniv.nl
D. Zhao
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, NL 2300 RA Leiden, The Netherlands. email: linnartz@strw.leidenuniv.nl
W. Ubachs
Affiliation:
LaserLaB, Department of Physics and Astronomy, VU University, De Boelelaan 1081, NL 1081 HV Amsterdam, The Netherlands
H. Linnartz
Affiliation:
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, NL 2300 RA Leiden, The Netherlands. email: linnartz@strw.leidenuniv.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new and sensitive set-up to swiftly test proposed carriers of the diffuse interstellar bands (DIBs), over a relatively broad spectral range, is described. The instrument utilizes broad-band cavity enhanced absorption spectroscopy (BBCEAS) and incorporates an optomechanical shutter to modulate light from a continuous incoherent light source. A pulsed supersonically expanding planar plasma expansion is used to mimic conditions in translucent interstellar clouds. Measurements of plasma durations as low as 400 μs are possible. The sensitivity is estimated to be better than 10 ppm/pass, measured with an effective exposure time of only ca. 1 s. The performance and potential of the instrument is demonstrated on spectra of C5H, C6H and C9H3 recorded through expanding hydrocarbon plasma.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Berden, G. & Engeln, R. (eds.) 2009, Cavity Ringdown Spectroscopy - Techniques and Applications (Wiley and Blackwell: Chester, United Kingdom)CrossRefGoogle Scholar
Fiedler, S. E., Hese, A., & Ruth, A. A. 2003, Chem. Phys. Lett., 371, 284Google Scholar
Foing, B. H. & Ehrenfreund, P. 1994, Nature, 319, L59Google Scholar
Giesen, T., van Orden, A., Hwang, H., Fellers, R., Provencal, R., & Saykally, R. 1994, Science, 265, 756Google Scholar
Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorbum, J. A., Bishop, M., Friedman, S. D., McCall, B., Rachford, B., Sonnentrucker, P., et al. 2008, Astrophys. J., 680, 1256Google Scholar
Motylewski, T. & Linnartz, H. 1999, Rev. Sci. Instrumen., 70, 1305Google Scholar
Motylewski, T., Linnartz, H., Vaizert, O., Maier, J. P., Galazutdinov, G. A., Musaev, F., Krelowski, J., Walker, G. A. H., & Bohlender, D. A. 2000, Astrophys. J., 531, 312Google Scholar
Nagarajan, R. & Maier, J. P. 2010, Int. Rev. Phys. Chem., 29, 521Google Scholar
Salama, F., Galazutdinov, G. A., Krelowski, J., Biennier, L., Beletsky, Y., & Song, In-Ok. 2011, Astrophys. J., 728, 154Google Scholar
Sorokin, P. P. & Glownia, J. H. 1996, Astrophys. J., 473, 900CrossRefGoogle Scholar
Walsh, A. J., Zhao, D., Ubachs, W., & Linnartz, H. 2013, J. Phys. Chem. A, 117, 9363Google Scholar
Zhao, D., Haddad, M. A., Linnartz, H., & Ubachs, W. 2011, J. Chem. Phys., 135, 044201Google Scholar