Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T21:48:40.459Z Has data issue: false hasContentIssue false

Polyynyl-Substituted PAH Molecules and DIB Carriers

Published online by Cambridge University Press:  21 February 2014

G. Rouillé
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany email: cornelia.jaeger@uni-jena.de
C. Jäger
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany email: cornelia.jaeger@uni-jena.de
F. Huisken
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany email: cornelia.jaeger@uni-jena.de
T. Henning
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polycyclic aromatic hydrocarbon (PAH) molecules have been long considered promising candidates for the carriers of the diffuse interstellar bands (DIBs). The PAH-DIB hypothesis, however, raises two major issues. First, the number of interstellar PAH species is potentially orders of magnitude larger than the number of DIBs. Second, the absorption spectrum of a PAH is in general dominated by bands found at UV wavelengths while, conversely, DIBs are absent from the UV wavelength domain and arise at visible and near IR wavelengths. These issues do not necessarily weaken the PAH-DIB hypothesis and can actually allow us to refine it. In that context, we analyze the UV/vis absorption spectra of PAH molecules isolated in Ne matrices and propose that polyynyl-substituted PAHs, or similar species, are valid candidates for the carriers of the DIBs. Finally, a possible lifecycle for DIB-carrying PAHs is presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733Google Scholar
Clar, E. 1950, Spectrochim. Acta, 4, 116Google Scholar
Clayton, G. C., Gordon, K. D., Salama, F., Allamandola, L. J., Martin, P. G., Snow, T. P., Whittet, D. C. B., Witt, A. N., & Wolff, M. J. 2003, ApJ, 592, 947Google Scholar
Crawford, M. K., Tielens, A. G. G. M., & Allamandola, L. J. 1985, ApJ (Letters), 293, L45Google Scholar
Duley, W. W. 2006, Faraday Discuss., 133, 415Google Scholar
Ekern, S. P., Marshall, A. G., Szczepanski, J., & Vala, M. 1998, J. Phys. Chem. A, 102, 3498Google Scholar
Geballe, T. R., Najarro, F., Figer, D. F., Schlegelmilch, B. W., & de la Fuente, D. 2011, Nature, 479, 200CrossRefGoogle Scholar
Gredel, R., Carpentier, Y., Rouillé, G., Steglich, M., Huisken, F., & Henning, Th. 2011, A&A, 530, A26Google Scholar
Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorburn, J. A., Bishof, M., Friedman, S. D., McCall, B., Rachford, B., Sonnentrucker, P., & Welty, D. E. 2008, ApJ, 680, 1256Google Scholar
Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., Friedman, S. D., McCall, B., Oka, T., Rachford, B., Sonnentrucker, P., & Welty, D. E. 2009, ApJ, 705, 32Google Scholar
Joblin, C., Maillard, J. P., d'Hendecourt, L., & Léger, A. 1990, Nature, 346, 729CrossRefGoogle Scholar
Jochims, H. W., Baumgärtel, H., & Leach, S. 1999, ApJ, 512, 500CrossRefGoogle Scholar
Léger, A. & d'Hendecourt, L. 1985, A&A, 146, 81Google Scholar
Mebel, A. M., Kislov, V. V., & Kaiser, R. I. 2008, J. Am. Chem. Soc., 130, 13618Google Scholar
Rouillé, G., Steglich, M., Carpentier, Y., Jäger, C., Huisken, F., Henning, Th., Czerwonka, R., Theumer, G., Börger, C., Bauer, I., & Knölker, H.-J. 2012, ApJ, 752, 25Google Scholar
Salama, F., Bakes, E. L. O., Allamandola, L. J., & Tielens, A. G. G. M. 1996, ApJ, 458, 621Google Scholar
Salama, F., Galazutdinov, G. A., Krełowski, J., Biennier, L., Beletsky, Y., & Song, I.-O. 2011, ApJ, 728, 154Google Scholar
Syage, J. A., Felker, P. M., Semmes, D. H., Al Adel, F., & Zewail, A. H. 1985, J. Chem. Phys., 82, 2896Google Scholar
Tan, X. 2009, Spectrochim. Acta A, 71, 2005Google Scholar
van der Zwet, G. P. & Allamandola, L. J. 1985, A&A, 146, 76Google Scholar
Werst, D. W., Brearley, A. M., Gentry, W. R., & Barbara, P. F. 1987, J. Am. Chem. Soc., 109, 32Google Scholar