Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T21:59:42.075Z Has data issue: false hasContentIssue false

Stochastically excited oscillations in the upper main sequence

Published online by Cambridge University Press:  18 February 2014

Victoria Antoci*
Affiliation:
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University Ny Munkegade 120, DK-8000 Aarhus C, Denmark email: antoci@phys.au.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in hotter stars, despite being shallow, are still effective and turbulent enough to stochastically excite oscillations. Because of the low amplitudes, exploring stochastically excited pulsations became possible only with space missions such as Kepler and CoRoT. Here I review the recent results and discuss among others, pulsators such as δ Scuti, γ Doradus, roAp, β Cephei, Slowly Pulsating B and Be stars, all in the context of solar-like oscillations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aerts, C., Briquet, M., Degroote, P., Thoul, A., & van Hoolst, T. 2011, A&A, 534, A98Google Scholar
Antoci, V., Handler, G., Campante, T. L., et al. 2011, Nature, 477, 570CrossRefGoogle Scholar
Antoci, V., Handler, G., Grundahl, F., et al. 2013, MNRAS, 435, 1563Google Scholar
Balmforth, N. J., Cunha, M. S., Dolez, N., Gough, D. O., & Vauclair, S. 2001, MNRAS, 323, 362CrossRefGoogle Scholar
Balona, L. A. & Dziembowski, W. A. 2011, MNRAS, 417, 591CrossRefGoogle Scholar
Belkacem, K., Samadi, R., Goupil, M.-J., et al. 2009, Science, 324, 1540Google Scholar
Belkacem, K., Dupret, M.-A., & Noels, A. 2010, A&A, 510, A6Google Scholar
Bigot, L. & Dziembowski, W. A. 2002, A&A, 391, 235Google Scholar
Blomme, R., Mahy, L., Catala, C., et al. 2011, A&A, 533, A4Google Scholar
Brown, T. M., Gilliland, R. L., Noyes, R. W., & Ramsey, L. W. 1991, ApJ, 368, 599CrossRefGoogle Scholar
Browning, M. K., Brun, A. S., & Toomre, J. 2004, in: Zverko, J., Žižňovský, J., Adelman, S. J., & Weiss, W. W. (eds.), The A-Star Puzzle, Proc. IAU Symposium No. 224 (Cambridge: Cambridge University Press), p. 149Google Scholar
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279Google Scholar
Cox, J. P. 1963, ApJ, 138, 487Google Scholar
Christensen-Dalsgaard, J. 2000, ASP-CS, 210, 454Google Scholar
Degroote, P. 2013, MNRAS, 431, 255CrossRefGoogle Scholar
Degroote, P., Briquet, M., Auvergne, M., et al. 2010, A&A, 519, A38Google Scholar
Eddington, A. S. 1919, MNRAS, 79, 177Google Scholar
García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79Google Scholar
Grigahcène, A., Antoci, V., Balona, L. A., et al. 2010, ApJ, 713, L192CrossRefGoogle Scholar
Guzik, J. A., Kaye, A. B., Bradley, P. A., Cox, A. N., & Neuforge, C. 2000, ApJ, 542, L57CrossRefGoogle Scholar
Gray, D. F. & Nagel, T. 1989, ApJ, 341, 421CrossRefGoogle Scholar
Handler, G., Matthews, J. M., Eaton, J. A., et al. 2009, ApJ, 698, 56CrossRefGoogle Scholar
Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999, A&A, 351, 582Google Scholar
Huat, A.-L., Hubert, A.-M., Baudin, F., et al. 2009, A&A, 506, 95Google Scholar
Huber, D., Bedding, T. R., Stello, D., et al. 2011, ApJ, 743, 143Google Scholar
Kallinger, T. & Matthews, J. M. 2010, ApJ, 711, L35Google Scholar
Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87Google Scholar
Kurtz, D. W. 1982, MNRAS, 200, 807CrossRefGoogle Scholar
Landstreet, J. D., Kupka, F., Ford, H. A., et al. 2009, A&A, 503, 973Google Scholar
Mathis, S., et al., 2013, A&A, in pressGoogle Scholar
Neiner, C., Floquet, M., Samadi, R., et al. 2012, A&A, 546, A47Google Scholar
Neiner, C., et al. 2013, Shibahashi, H. and Lynas-Gray, A. E. (eds.), Progress in Physics of the Sun and Stars: A New Era in Helio- and Asteroseismology, ASP-CS, in pressGoogle Scholar
Pamyatnykh, A. A. 2000, ASP-CS, 210, 215Google Scholar
Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85Google Scholar
Porter, J. M. & Rivinius, T. 2003, PASP, 115, 1153Google Scholar
Rogers, T. M., Lin, D. N. C., & Lau, H. H. B. 2012, ApJ, 758, 6CrossRefGoogle Scholar
Royer, F. 2009, Lecture Notes in Physics, 765, 207Google Scholar
Samadi, R., Goupil, M.-J., & Houdek, G. 2002, A&A, 395, 563Google Scholar
Samadi, R., Belkacem, K., Goupil, M.-J., Dupret, M.-A., Brun, A. S., & Noels, A. 2010, Ap&SS, 328, 253Google Scholar
Shiode, J. H., Quataert, E., Cantiello, M., & Bildsten, L. 2013, MNRAS, 430, 1736Google Scholar
Simon, T., Ayres, T. R., Redfield, S., & Linsky, J. L. 2002, ApJ, 579, 800Google Scholar
Théado, S., Alecian, G., LeBlanc, F., & Vauclair, S. 2012, A&A, 546, A100Google Scholar
Tkachenko, A., Lehmann, H., Smalley, B., Debosscher, J., & Aerts, C. 2012, MNRAS, 422, 2960Google Scholar
Uytterhoeven, K., Moya, A., Grigahcène, A., et al. 2011, A&A, 534, A125Google Scholar