Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T03:48:50.095Z Has data issue: false hasContentIssue false

Blazhko effect in Cepheids and RR Lyrae stars

Published online by Cambridge University Press:  18 February 2014

Róbert Szabó*
Affiliation:
Konkoly Observatory, Research Center for Astronomy and Earth Sciences of the Hungarian Academy of SciencesKonkoly Thege Miklós út 15-17. H-1121, Budapest, Hungary email: szabo.robert@csfk.mta.hu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time-series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, such as extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts provide us now with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these lines I present the latest efforts and advances from the theoretical point of view. Lastly, amplitude variations in Cepheids are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alcock, C., Alves, D. R., Becker, A., et al. 2003, ApJ, 598, 597CrossRefGoogle Scholar
Benkő, J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585CrossRefGoogle Scholar
Benkő, J. M., Szabó, R. & Paparó, M. 2011, MNRAS, 417, 974Google Scholar
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977CrossRefGoogle Scholar
Bruntt, H., Evans, N. R., Stello, D., et al. 2008, ApJ, 683, 433CrossRefGoogle Scholar
Blažko, S. 1907, AN, 175, 327Google Scholar
Buchler, J. R. & Kolláth, Z. 2011, ApJ, 731, 24Google Scholar
Burki, G., Schmidt, E. G., Arellano Ferro, A., et al. 1986, A&A, 168, 139Google Scholar
Chadid, M., Benkő, J. M., Szabó, R., et al. 2010, A&A, 510, A39Google Scholar
Dziembowski, W. 1977, AcA 27, 95Google Scholar
Geroux, C. M. & Deupree, R. G. 2011, ApJ, 731, 18Google Scholar
Geroux, C. M. & Deupree, R. G. 2013, ApJ, 771, 113Google Scholar
Gillet, D., Fabas, N., & Lèbre, A. 2013, A&A 553, A59Google Scholar
Guggenberger, E., Kolenberg, K., Poretti, E., et al. 2011, MNRAS, 415, 1577Google Scholar
Guggenberger, E., Kolenberg, K., Nemec, J. M., et al. 2012, MNRAS, 424, 649Google Scholar
Hurta, Zs., Jurcsik, J., Szeidl, B. & Sódor, Á. 2008, AJ, 135, 957CrossRefGoogle Scholar
Jurcsik, J., Sódor, Á., Szeidl, B., et al. 2009, MNRAS, 400, 1006Google Scholar
Kolenberg, K., Szabó, R., Kurtz, D. W., et al. 2010, ApJ, 713, L198CrossRefGoogle Scholar
Kolenberg, K., Bryson, S., Szabó, R., et al. 2011, MNRAS, 411, 878Google Scholar
Kolláth, Z., Buchler, J. R., Szabó, R., & Csubry, Z. 2002, A&A, 385, 932Google Scholar
Kolláth, Z., Molnár, L., & Szabó, R. 2011, MNRAS, 414, 1111Google Scholar
Kovács, G. 2009, AIP-CP, 1170, 261Google Scholar
Molnár, L., Kolláth, Z., Szabó, R., et al. 2012, ApJ, 757, L13Google Scholar
Molnár, L., Szabó, R., Kolenberg, K., et al. 2013a, arXiv: 1309.0740Google Scholar
Molnár, L., Szabados, L., Dukes, R. J. Jr, Győrffy, Á., & Szabó, R. 2013b, AN, in press (arXiv: 1309.2108)Google Scholar
Moskalik, P. 2013, in: Suárez, J. C., Garrido, R., Balona, L. A., & Christensen-Dalsgaard, J. (eds.), Stellar Pulsations, Astrophysics and Space Science Proceedings, Vol. 31 (Berlin, Heidelberg: Springer-Verlag), p. 103Google Scholar
Moskalik, P. & Kołaczkowski, Z. 2009, MNRAS, 394, 1649Google Scholar
Nemec, J. M., Smolec, R., Benkő, J. M., et al. 2011, MNRAS, 417, 1022Google Scholar
Plachy, E., Kolláth, Z., & Molnár, L. 2013, MNRAS, 433, 3590Google Scholar
Preston, G. W. 2009, A&A, 507, 1621Google Scholar
Preston, G. W. 2011, AJ, 141, 6Google Scholar
Rauer, H., Catala, C., Aerts, C., et al. 2013, Experimental Astronomy, submitted (arXiv: 1310.0696)Google Scholar
Ricker, G. R., Latham, D. W., Vanderspek, R. K., et al. 2010, BAAS, 42, 459Google Scholar
Shapley, H. 1916, ApJ, 43, 217Google Scholar
Smolec, R. & Moskalik, P. 2008, AcA, 58, 193Google Scholar
Smolec, R. & Moskalik, P. 2012, MNRAS, 426, 108Google Scholar
Spreckley, S. A. & Stevens, I. R. 2008, MNRAS, 388, 1239Google Scholar
Sódor, Á., Jurcsik, J., Szeidl, B., et al. 2011, MNRAS, 411, 1585CrossRefGoogle Scholar
Szabó, R., Kolláth, Z., Molnár, L., et al. 2010, MNRAS, 409, 1244Google Scholar
Szeidl, B. & Jurcsik, J. 2009, CoAst, 160, 17Google Scholar
Turner, D. G., Savoy, J., Derrah, J., Abdel-Sabour, A.-L. M., & Berdnikov, L. N. 2005, PASP, 117, 207Google Scholar
Van Hoolst, T., Dziembowski, W. A., & Kawaler, S. D. 1998, MNRAS, 297, 536CrossRefGoogle Scholar