Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T11:46:07.865Z Has data issue: false hasContentIssue false

New insights on the Golgi complex of Tritrichomonas foetus

Published online by Cambridge University Press:  18 October 2013

IVONE De ANDRADE ROSA
Affiliation:
Universidade Santa Úrsula, Rio de Janeiro, Brazil Programa de Ciências Morfológicas – Universidade Federal do Rio de Janeiro, Brazil Instituto de Biofísica Carlos Chagas Filho – Universidade Federal do Rio de Janeiro, Brazil
MARJOLLY BRIGIDO CARUSO
Affiliation:
Instituto de Bioquímica Medica (Unidade de Espectrometria de Massa e Proteômica) – Universidade Federal do Rio de Janeiro e Instituto Nacional de Biologia Estrutural e Bioimagem – INBEB, Brazil
SILAS PESSINI RODRIGUES
Affiliation:
Instituto de Bioquímica Medica (Unidade de Espectrometria de Massa e Proteômica) – Universidade Federal do Rio de Janeiro e Instituto Nacional de Biologia Estrutural e Bioimagem – INBEB, Brazil
REINALDO BARROS GERALDO
Affiliation:
Instituto de Bioquímica Medica (Unidade de Espectrometria de Massa e Proteômica) – Universidade Federal do Rio de Janeiro e Instituto Nacional de Biologia Estrutural e Bioimagem – INBEB, Brazil
LUIZA WILGES KIST
Affiliation:
Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
MAURICIO REIS BOGO
Affiliation:
Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
LUIZ GONZAGA
Affiliation:
Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, Rio de Janeiro, Brazil
ANA TEREZA R DE VASCONCELOS
Affiliation:
Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, Rio de Janeiro, Brazil
JOSE ANDRES MORGADO-DÍAZ
Affiliation:
INCA – Grupo de Biologia Estrutural, Divisão de Biologia Celular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
RUSSOLINA BENEDETA ZINGALI
Affiliation:
Instituto de Bioquímica Medica (Unidade de Espectrometria de Massa e Proteômica) – Universidade Federal do Rio de Janeiro e Instituto Nacional de Biologia Estrutural e Bioimagem – INBEB, Brazil
MARLENE BENCHIMOL*
Affiliation:
Universidade Santa Úrsula, Rio de Janeiro, Brazil
*
*Corresponding author: Rua Jornalista Orlando Dantas 59, Botafogo, CEP 22231-010 Rio de Janeiro, RJ, Brazil. E-mail: marlenebenchimol@gmail.com

Summary

Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, P. A., Albuquerque, M. G., Rodrigues, C. R. and Castro, H. C. (2006). Structure function inferences based on molecular modeling, sequence-based methods and biological data analysis of snake venom lectins. Toxicon 48, 690701.Google Scholar
Almeida, J. C., Benchimol, M., de Souza, W. and Okorokov, L. A. (2003). Ca(2+) sequestering in the early-branching amitochondriate protozoan Tritrichomonas foetus: an important role of the Golgi complex and its Ca(2+)-ATPase. Biochimica et Biophysica Acta 1615, 6068.Google Scholar
Benchimol, M. (2004) Trichomonads under microscopy. Microscopy and Microanalysis 10, 528550.Google Scholar
Benchimol, M. and Bernardino, M. V. (2002). Ultrastructural localization of glycoconjugates in Tritrichomonas foetus . Parasitology Research 88, 134143.Google Scholar
Benchimol, M., Elias, C. A. and De Souza, W. (1982). Tritrichomonas foetus: fine structure of freeze-fractured membranes. Journal of Protozoology 29, 348353.Google Scholar
Benchimol, M., Ribeiro, K. C., Mariante, R. M. and Alderete, J. F. (2001). Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus . European Journal of Cell Biology 80, 593607.Google Scholar
Bozner, P. (1997). Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis . Journal of Parasitology 83, 224229.Google Scholar
Carafoli, E. and Brini, M. (2000). Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Current Opinion in Chemical Biology 4, 152161.Google Scholar
Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van de Peer, Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Müller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., Haas, B. J., Pertea, M., Feldblyum, T. V., Utterback, T. R., Shu, C. L., Osoegawa, K., de Jong, P. J., Hrdy, I., Horvathova, L., Zubacova, Z., Dolezal, P., Malik, S. B., Logsdon, J. M. Jr., Henze, K., Gupta, A., Wang, C. C., Dunne, R. L., Upcroft, J. A., Upcroft, P., White, O., Salzberg, S. L., Tang, P., Chiu, C. H., Lee, Y. S., Embley, T. M., Coombs, G. H., Mottram, J. C., Tachezy, J., Fraser-Liggett, C. M. and Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science 315, 207212.Google Scholar
Castro, H. C., Silva, D. M., Craik, C. and Zingali, R. B. (2001 ). Structural features of a snake venom thrombin-like enzyme: thrombin and trypsin on a single catalytic platform? Biochemica Biophysica Acta 1547, 183195.Google Scholar
De Melo, E. J. and de Souza, W. (1996). Pathway of C6-NBD-Ceramide on the host cell infected with Toxoplasma gondii . Cell Structure and Function 21, 4752.Google Scholar
Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488490.Google Scholar
Díaz, J. A. and De Souza, W. (1998). Biochemical characterization of the Golgi-complex proteins of Tritrichomonas foetus . Parasitology Research 84, 760762.Google Scholar
Díaz, J. A., Monteiro-Leal, L. H. and De Souza, W. (1996). Tritrichomonas foetus: isolation and characterization of the Golgi complex. Experimental Parasitology 83, 174183.Google Scholar
Eng, J. K., McCormack, A. L. and Yates, J. R. J. III (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequence in a protein database. American Society for Mass Spectrometry 5, 976989.Google Scholar
Gookin, J. L., Stebbins, M. E., Hunt, E., Burlone, K., Fulton, M., Hochel, R., Talaat, M., Poore, M. and Levy, M. G. (2004). Prevalence of and risk factors for feline Tritrichomonas foetus and giardia infection. Journal of Clinical Microbiology 42, 27072710.Google Scholar
Grunow, A., Rüsing, M., Becker, B. and Melkonian, M. (1999). V-ATPase is a major component of the Golgi complex in the scaly green flagellate Scherffeli adubia . Protist 150, 265281.Google Scholar
Hampl, V., Pavlícek, A. and Flegr, J. (2001). Construction and bootstrap analysis of DNA finger printing-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology 51, 731735.Google Scholar
Honigberg, B. M. and Brugerolle, G. (1990). Structure. In Trichomonads Parasitic in Humans (ed. Honigberg, B. M.), pp. 5483. Springer-Verlag, New York, USA.Google Scholar
Honigberg, B. M., Mattern, C. F. T. and Daniel, W. A. (1971). Fine structure of the mastigont system in Tritrichomonas foetus (Riedmuller). Journal of Protozoology 18, 183192.Google Scholar
Knudsen, G. M. and Chalkley, R. J. (2011). The effect of using an inappropriate protein database for proteomic data analysis. PLoS ONE 6, e20873.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Lindmark, D. G. and Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry 248, 77247728.Google Scholar
Lopes, L. C., Ribeiro, K. C. and Benchimol, M. (2001). Immunolocalization of tubulin isoforms and post-translational modifications in the protists Tritrichomonas foetus and Trichomonas vaginalis . Histochemistry and Cell Biology 116, 1729.Google Scholar
Lucocq, J. M. and Gawden-Bone, C. (2010). Quantitative assessment of specificity in immunoelectron microscopy. Journal of Histochemistry and Cytochemistry 58, 917927.Google Scholar
Lundgren, D. H., Han, D. K. and Eng, J. K. (2005). Unit 13.3. Protein identification using TurboSEQUEST. Current Protocols in Bioinformatics. doi: 10.1002/0471250953.bi1303s10.Google Scholar
Lytton, J., Westlin, M., Burk, S. E., Shull, G. E. and MacLennan, D. H. (1992). Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. Journal of Biological Chemistry 267, 1448314489.Google Scholar
Madeiro da Costa, R. F. and Benchimol, M. (2004). The effect of drugs on cell structure of Tritrichomonas foetus . Parasitology Research 92, 159170.Google Scholar
Müller, M. (1973). Biochemical cytology of trichomonad flagellates. I. Subcellular localization of hydrolases, dehydrogenases, and catalase in Tritrichomonas foetus . Journal of Cell Biology 57, 453474.Google Scholar
Nielsen, M. H. (1974). Fine structural localization of nucleoside triphosphatase and acid phosphatase activity in Trichomonas vaginalis Donné. Cell and Tissue Research 151, 269280.Google Scholar
Ordenes, V. R., Reyes, F. C., Wolff, D. and Orellana, A. (2002). A thapsigargin-sensitive Ca(2+) pump is present in the pea Golgi apparatus membrane. Plant Physiology 129, 18201828.Google Scholar
Pagano, R. E., Sepanski, M. A. and Martin, O. C. (1989). Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. Journal of Cell Biology 109, 20672079.Google Scholar
Queiroz, R. C. B., Santos, L. M. S., Benchimol, M. and De Souza, W. (1991). Cytochemical localization of enzyme markers in Tritrichomonas foetus . Parasitology Research 77, 561566.Google Scholar
Rae, D. O. and Crews, J. E. (2006). Tritrichomonas foetus . Veterinary Clinics of North America. Food Animal Practice 22, 595611.Google Scholar
Rodrigues, S. P., Ventura, J. A., Aguilar, C., Nakayasu, E. S., Almeida, I. C., Fernandes, P. M. and Zingali, R. B. (2011). Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms. Proteomics 11, 25922602.Google Scholar
Sagara, Y. and Inesi, G. (1991). Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. Journal of Biological Chemistry 266, 1350313506.Google Scholar
Sharma, N. N. and Bourne, G. H. (1967). Distribution of adenosine triphosphatase in Trichomonas vaginalis . Acta Histochemica 26, 210221.Google Scholar
Simons, K. and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 61976202.Google Scholar
Stockdale, H. D., Dillon, A. R., Newton, J. C., Bird, R. C., Bondurant, R. H., Deinnocentes, P., Barney, S., Bulter, J., Land, T., Spencer, J. A., Lindsay, D. S. and Blagburn, B. L. (2008). Experimental infection of cats (Felis catus) with Tritrichomonas foetus isolated from cattle. Veterinary Parasitology 154, 156161.Google Scholar
Yaeger, M. J. and Gookin, J. L. (2005). Histologic features associated with Tritrichomonas foetus-induced colitis in domestic cats. Veterinary Pathology 42, 797804.Google Scholar