Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T19:53:55.213Z Has data issue: false hasContentIssue false

Autopsy of the Supernova Remnant Cassiopeia A

Published online by Cambridge University Press:  29 January 2014

Dan Milisavljevic
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 email: dmilisav@cfa.harvard.edu
Robert A. Fesen
Affiliation:
6127 Wilder Lab, Dept. of Physics & Astronomy, Dartmouth College, Hanover, NH 03755 email: robert.fesen@dartmouth.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three-dimensional kinematic reconstructions of optically emitting ejecta in the young Galactic supernova remnant Cassiopeia A (Cas A) are discussed. The reconstructions encompass the remnant's faint outlying ejecta knots, including the exceptionally high-velocity NE and SW streams of debris often referred to as ‘jets’. The bulk of Cas A's ejecta are arranged in several circular rings with diameters between approximately 30″ (0.5 pc) and 2′ (2 pc). We suggest that similar large-scale ejecta rings may be a common phenomenon of young core-collapse remnants and may explain lumpy emission line profile substructure sometimes observed in spectra of extragalactic core-collapse supernovae years after explosion. A likely origin for these large ejecta rings is post-explosion input of energy from plumes of radioactive 56Ni-rich ejecta that rise, expand, and compress non-radioactive material to form bubble-like structures.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ, 584, 954CrossRefGoogle Scholar
Basko, M. 1994, ApJ, 425, 264Google Scholar
Besel, M.-A. & Krause, O. 2012, A&A, 541, L3Google Scholar
Blondin, J. M., Borkowski, K. J., & Reynolds, S. P. 2001, ApJ, 557, 782Google Scholar
DeLaney, T., Rudnick, L., Stage, M. D., et al. 2010, ApJ, 725, 2038Google Scholar
Fesen, R. A., Hammell, M. C., Morse, J., et al. 2006, ApJ, 645, 283Google Scholar
Hammer, N. J., Janka, H., & Müller, E. 2010, ApJ, 714, 1371Google Scholar
Janka, H.-T. 2012, Annual Review of Nuclear and Particle Science, 62, 407Google Scholar
Khokhlov, A. M., Höflich, P. A., Oran, E. S., et al. 1999, ApJ, 524, L107Google Scholar
Krause, O., Birkmann, S. M., Usuda, T., et al. 2008, Science, 320, 1195Google Scholar
Li, H., McCray, R., & Sunyaev, R. A. 1993, ApJ, 419, 824Google Scholar
Milisavljevic, D. & Fesen, R. A. 2013, ApJ, submittedGoogle Scholar
Milisavljevic, D., Fesen, R. A., Chevalier, R. A., et al. 2012, ApJ, 751, 25Google Scholar
Reed, J. E., Hester, J. J., Fabian, A. C., & Winkler, P. F. 1995, ApJ, 440, 706CrossRefGoogle Scholar
Rest, A., Foley, R. J., Sinnott, B., et al. 2011, ApJ, 732, 3Google Scholar
Thorstensen, J. R., Fesen, R. A., & van den Bergh, S. 2001, AJ, 122, 297Google Scholar
Wang, L., Wheeler, J. C., Höflich, P., et al. 2002, ApJ, 579, 671Google Scholar
Wheeler, J. C., Meier, D. L., & Wilson, J. R. 2002, ApJ, 568, 807Google Scholar