Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T01:57:56.627Z Has data issue: false hasContentIssue false

A tale of two shocks in SN 2004dj

Published online by Cambridge University Press:  29 January 2014

Alak Ray
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
Sayan Chakraborti
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Naveen Yadav
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
Randall Smith
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Poonam Chandra
Affiliation:
National Centre for Radio Astrophysics, TIFR, Pune 411007, India
David Pooley
Affiliation:
Sam Houston State University, Huntsville, TX 77341, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Type IIP SNe constitute a major fraction of all core-collapse supernovae and arise from massive stars that end their lives close to Red Supergiants. The blastwave from the SN interacting with the progenitor's circumstellar matter produces a hot region bounded by a forward and a reverse shock from which most of the X-ray emission originates. Analysis of archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, together with published data from radio and optical bands determines the pre-explosion mass-loss rate, blastwave speed, electron acceleration and magnetic field amplification efficiencies. X-ray emission arises from both inverse Compton scattering by non-thermal electrons accelerated in the forward shock and from thermal emission from the supernova ejecta hit by the reverse shock. Determination of the properties of the radiating plasma based on the separation of thermal and non-thermal radiation differentiates different types of supernovae and their environments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Beswick, R. J., et al. 2005, ApJ Letters, 623, L21Google Scholar
Chakraborti, S., et al. 2013, these Proceedings & arXiv: 1302.7067Google Scholar
Chakraborti, S., Yadav, N., & Ray, A., et al. 2012, ApJ, 761, 100Google Scholar
Chandra, P., et al. 2013, In preparationGoogle Scholar
Chevalier, R. A. 1982, ApJ, 258, 790CrossRefGoogle Scholar
Chevalier, R. A., Fransson, C., & Nymark, T. K. 2006, ApJ, 641, 1029Google Scholar
Chevalier, R. A. & Fransson, C. 2006, ApJ, 651, 381Google Scholar
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, Astron. Astroph. Suppl., 72, 259Google Scholar
Maiz-Apellaniz, J., et al. 2004, ApJ Letters, 615, L113CrossRefGoogle Scholar
Maund, J., et al. 2011, ApJ Letters 739, L37Google Scholar
Maund, J. & Smartt, S. 2009, Science 324, 486CrossRefGoogle Scholar
Pooley, D. & Lewin, W. H. G. 2004, IAUC, 8390, 1Google Scholar
Smartt, S., et al. 2009, MNRAS 395, 1409Google Scholar
Smith, N., et al. 2011, MNRAS, 412, 1522Google Scholar
Smith, R. K., et al. 2001, ApJ Letters, 556, L91Google Scholar
Yadav, N., et al. 2013, these ProceedingsGoogle Scholar
Zhang, T., et al. 2006, AJ 131, 2245Google Scholar