Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T15:47:44.959Z Has data issue: false hasContentIssue false

Supernova interaction with dense mass loss

Published online by Cambridge University Press:  29 January 2014

Roger A. Chevalier*
Affiliation:
Dept. of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22903, USA email: rac5x@virginia.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae of Type IIn (narrow line) appear to be explosions that had strong mass loss before the event, so that the optical luminosity is powered by the circumstellar interaction. If the mass loss region has an optical depth >c/vs, where vs is the shock velocity, the shock breakout occurs in the mass loss region and a significant fraction of the explosion energy can be radiated. The emission from the superluminous SN 2006gy and the normal luminosity SN 2011ht can plausibly be attributed to shock breakout in a wind, with SN 2011ht being a low energy event. Superluminous supernovae of Type I may derive their luminosity from interaction with a mass loss region of limited extent. However, the distinctive temperature increase to maximum luminosity has not been clearly observed in Type I events. Suggested mechanisms for the strong mass loss include pulsational pair instability, gravity-waves generated by instabilities in late burning phases, and binary effects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Balberg, S. & Loeb, A. 2011, MNRAS, 414, 1715Google Scholar
Barkov, M. V. & Komissarov, S. S. 2011, MNRAS, 415, 944Google Scholar
Chandra, P., Chevalier, R. A., Irwin, C. M., et al. 2012, ApJ (Letters), 750, L2Google Scholar
Chevalier, R. A. 1996, ApJ, 459, 322Google Scholar
Chevalier, R. A. 2012, ApJ (Letters), 752, L2Google Scholar
Chevalier, R. A. & Irwin, C. M. 2011, ApJ (Letters), 729, L6Google Scholar
Chevalier, R. A. & Irwin, C. M. 2012, ApJ (Letters), 747, L17Google Scholar
Chevalier, R. A., Fransson, C., & Nymark, T. K. 2006, ApJ, 641, 1029Google Scholar
Chornock, R., Berger, E., Rest, A., et al. 2013, preprint, arXiv:1302.0009Google Scholar
Chugai, N. N. & Danziger, I. J. 1994, MNRAS, 268, 173Google Scholar
Dwarkadas, V. V. & Gruszko, J. 2012, MNRAS, 419, 1515Google Scholar
Fraser, M., Inserra, C., Jerkstrand, A., et al. 2013, MNRAS submitted arXiv:1303.3453Google Scholar
Fryer, C. L. & Woosley, S. E. 1998, ApJ (Letters), 502, L9Google Scholar
Gal-Yam, A. & Leonard, D. C. 2009, Nature, 458, 865CrossRefGoogle Scholar
Gezari, S., Halpern, J. P., Grupe, D., et al. 2009, ApJ, 690, 1313Google Scholar
Ginzburg, S. & Balberg, S. 2012, ApJ, 757, 178Google Scholar
Janka, H.-T. 2012, ARNPS, 62, 407Google Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245Google Scholar
Katz, B., Sapir, N., & Waxman, E. 2011, preprint, arXiv:1106.1898Google Scholar
Kiewe, M., Gal-Yam, A., Arcavi, I., et al. 2012, ApJ, 744, 10Google Scholar
Leloudas, G., Chatzopoulos, E., Dilday, B., et al. 2012, A&A, 541, A129Google Scholar
Mauerhan, J. C., Smith, N., Silverman, J. M., et al. 2013, MNRAS, 1053Google Scholar
Miller, A. A., Chornock, R., Perley, D. A., et al. 2009, ApJ, 690, 1303Google Scholar
Moriya, T. J., Blinnikov, S. I., Tominaga, N., et al. 2013, MNRAS, 428, 1020Google Scholar
Murase, K., Thompson, T. A., Lacki, B. C., & Beacom, J. F. 2011, Phys. Rev. D, 84, 043003CrossRefGoogle Scholar
Ofek, E. O., Cameron, P. B., Kasliwal, M. M., et al. 2013, ApJ (Letters), 659, L13Google Scholar
Ofek, E. O., Sullivan, M., Cenko, S. B., et al. 2013, Nature, 494, 65Google Scholar
Pastorello, A., Smartt, S. J., Botticella, M. T., et al. 2010, ApJ (Letters), 724, L16Google Scholar
Pooley, D. 2012, The Astro. Tel., 4062, 1Google Scholar
Quataert, E. & Shiode, J. 2012, MNRAS, 423, L92Google Scholar
Rest, A., Foley, R. J., Gezari, S., et al. 2011, ApJ, 729, 88Google Scholar
Roming, P. W. A., Pritchard, T. A., Prieto, J. L., et al. 2012, ApJ, 751, 92Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444Google Scholar
Smith, N. & McCray, R. 2007, ApJ (Letters), 671, L17Google Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007, ApJ, 666, 1116Google Scholar
Smith, N., Chornock, R., Silverman, J. M., Filippenko, A. V., & Foley, R. J. 2010, ApJ, 709, 856Google Scholar
Smith, N., Mauerhan, J. C., Kasliwal, M. M., & Burgasser, A. J. 2013, preprint, arXiv:1303.0304Google Scholar
Soker, N. 2013, preprint, arXiv:1302.5037Google Scholar
Svirski, G., Nakar, E., & Sari, R. 2012, ApJ, 759, 108Google Scholar
Thorne, K. S. & Żytkow, A. N. 1977, ApJ, 212, 832Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390Google Scholar