Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T10:12:35.242Z Has data issue: false hasContentIssue false

Recent Hubble Space Telescope Observations of SN 1987A: Broad Emission Lines

Published online by Cambridge University Press:  29 January 2014

Kevin France*
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309; kevin.france@colorado.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations with the Hubble Space Telescope (HST), conducted since 1990, have allowed us to create a “movie” of the evolution of the core-collapse supernova SN 1987A from 3–25 years after the explosion. Critical to understanding the late time evolution of SN 1987A was the successful HST Servicing Mission 4 in May 2009. The repair of the STIS instrument and the installation of the WFC3 imager and COS spectrograph have provided crucial data points for understanding the temporal variability in the physical structure and energy sources for SN 1987A, as well as measurements of the chemical abundances of the ejecta. In this proceeding, I will focus on two topics that have made use of the expanded capability of HST and highlight the importance of access to a UV/optical space observatory for the studies of local supernovae: 1) 2) The decreasing maximum velocity of neutral hydrogen crossing the reverse shock front and the role of soft X-ray/EUV heating in the outer supernova debris and 2) The detection of metals (N4+ and C3+ ions) crossing the reverse shock front and CNO processing in the progenitor star.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Callaway, J. 1988, PRA, 37, 3692Google Scholar
Caughlan, G. R. & Fowler, W. A. 1962, ApJ, 136, 453CrossRefGoogle Scholar
Danforth, C. W., Keeney, B. A., Stocke, J. T., Shull, J. M., & Yao, Y. 2010, ApJ, 720, 976CrossRefGoogle Scholar
France, K., Beasley, M., Keeney, B. A., Danforth, C. W., Froning, C. S., Green, J. C., & Shull, J. M. 2009, ApJl, 707, L27Google Scholar
France, K., McCray, R., Heng, K., Kirshner, R. P., Challis, P., Bouchet, P., Crotts, A., Dwek, E., Fransson, C., Garnavich, P. M., Larsson, J., Lawrence, S. S., Lundqvist, P., Panagia, N., Pun, C. S. J., Smith, N., Sollerman, J., Sonneborn, G., Stocke, J. T., Wang, L., & Wheeler, J. C. 2010, Science, 329, 1624Google Scholar
France, K., McCray, R., Penton, S. V., Kirshner, R. P., Challis, P., Laming, J. M., Bouchet, P., Chevalier, R., Garnavich, P. M., Fransson, C., Heng, K., Larsson, J., Lawrence, S., Lundqvist, P., Panagia, N., Pun, C. S. J., Smith, N., Sollerman, J., Sonneborn, G., Sugerman, B., & Wheeler, J. C. 2011, ApJ, 743, 186CrossRefGoogle Scholar
Fransson, C., Cassatella, A., Gilmozzi, R., Kirshner, R. P., Panagia, N., Sonneborn, G., & Wamsteker, W. 1989, ApJ, 336, 429Google Scholar
Fransson, C., Larsson, J., Spyromilio, J., Chevalier, R., Groningsson, P., Jerkstrand, A., Leibundgut, B., McCray, R., Challis, P., Kirshner, R. P., Kjaer, K., Lundqvist, P., & Sollerman, J. 2012, ArXiv e-printsGoogle Scholar
Heng, K., Haberl, F., Aschenbach, B., & Hasinger, G. 2008, ApJ, 676, 361CrossRefGoogle Scholar
Heng, K. & McCray, R. 2007, ApJ, 654, 923Google Scholar
Heng, K., McCray, R., Zhekov, S. A., Challis, P. M., Chevalier, R. A., Crotts, A. P. S., Fransson, C., Garnavich, P., Kirshner, R. P., Lawrence, S. S., Lundqvist, P., Panagia, N., Pun, C. S. J., Smith, N., Sollerman, J., & Wang, L. 2006, ApJ, 644, 959Google Scholar
Kozma, C. & Fransson, C. 1992, ApJ, 390, 602CrossRefGoogle Scholar
Lundqvist, P. & Fransson, C. 1996, ApJ, 464, 924CrossRefGoogle Scholar
Mattila, S., Lundqvist, P., Gröningsson, P., Meikle, P., Stathakis, R., Fransson, C., & Cannon, R. 2010, ApJ, 717, 1140CrossRefGoogle Scholar
Michael, E., McCray, R., Borkowski, K. J., Pun, C. S. J., & Sonneborn, G. 1998, ApJ, 492, L143CrossRefGoogle Scholar
Michael, E., McCray, R., Chevalier, R., Filippenko, A. V., Lundqvist, P., Challis, P., Sugerman, B., Lawrence, S., Pun, C. S. J., Garnavich, P., Kirshner, R., Crotts, A., Fransson, C., Li, W., Panagia, N., Phillips, M., Schmidt, B., Sonneborn, G., Suntzeff, N., Wang, L., & Wheeler, J. C. 2003, ApJ, 593, 809CrossRefGoogle Scholar
Osterman, S., Green, J., Froning, C., Béland, S., Burgh, E., France, K., Penton, S., Delker, T., Ebbets, D., Sahnow, D., Bacinski, J., Kimble, R., Andrews, J., Wilkinson, E., McPhate, J., Siegmund, O., Ake, T., Aloisi, A., Biagetti, C., Diaz, R., Dixon, W., Friedman, S., Ghavamian, P., Goudfrooij, P., Hartig, G., Keyes, C., Lennon, D., Massa, D., Niemi, S., Oliveira, C., Osten, R., Proffitt, C., Smith, T., & Soderblom, D. 2011, ApS & S, 157Google Scholar
Racusin, J. L., Park, S., Zhekov, S., Burrows, D. N., Garmire, G. P., & McCray, R. 2009, ApJ, 703, 1752CrossRefGoogle Scholar
Shigeyama, T. & Nomoto, K. 1990, ApJ, 360, 242CrossRefGoogle Scholar
Sonneborn, G., Pun, C. S. J., Kimble, R. A., Gull, T. R., Lundqvist, P., McCray, R., Plait, P., Boggess, A., Bowers, C. W., Danks, A. C., Grady, J., Heap, S. R., Kraemer, S., Lindler, D., Loiacono, J., Maran, S. P., Moos, H. W., & Woodgate, B. E. 1998, ApJl, 492, L139CrossRefGoogle Scholar
Spitzer, L. 1978, Physical processes in the interstellar mediumGoogle Scholar
Xu, Y., McCray, R., Oliva, E., & Randich, S. 1992, ApJ, 386, 181Google Scholar
Zhekov, S. A., McCray, R., Borkowski, K. J., Burrows, D. N., & Park, S. 2006, ApJ, 645, 293Google Scholar