Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T10:26:49.945Z Has data issue: false hasContentIssue false

Variation in growth, production and quality attributes of Physalis species under temperate ecosystem

Published online by Cambridge University Press:  28 January 2014

Get access

Abstract

Introduction. Diverse fruit crops with a high value reduce the risk of crop failure and offer alternatives to farmers and the market. The scope of profitable production with such quality crops along with environmental concerns make the evaluation of new species desirable. The aim of our study was to determine the most appropriate species of Physalis for small-scale commercial production in the temperate climate of western Himalayan regions. Materials and methods. Four Physalis species, viz., P. peruviana, P. ixocarpa, P. pruinosa and P. nicandroides, were field-grown during 2010–2011 in the experimental field of the Central Institute of Temperate Horticulture, Srinagar, India, to determine the most appropriate species of Physalis suitable for a temperate climate. Results and discussion. All the species tested produced vegetative growth, flowered and fruited; however, they differed significantly. The number of basal shoots was found to be maximum for P. pruinosa (6.37), whereas the maximum number of prickles per shoot was recorded as maximum for P. nicandroides (6.48). The number of points of attachment varied significantly with species, and the maximum was recorded for P. pruinosa and P. ixocarpa (7.16 for each); the maximum size of fully developed leaves (146.8 mm) and overall plant height (168.27 cm) were recorded for P. pruinosa. Physalis pruinosa and P. ixocarpa were found to exhibit vigorous growth under a temperate climate. Significant differences were recorded for fruiting, flowering and yield potential among the Physalis species. The minimum days taken for bud burst were reported for P. nicandroides (23.55) and P. ixocarpa (24.41). Similarly, the minimum days taken to reach maturity were reported for P. peruviana (64.96). The maximum number of fruits per plant (260.23), length of fruit (33.83 mm), average fruit weight (37.19 g), husk weight (0.32 g), fruit husk ratio (121.27), maximum fruit firmness (43.96 Relative Index) and yield (9.96 Relative Index) were recorded for P. pruinosa. Significant variation was recorded in quality attributes. The highest total soluble solids were found for P. nicandroides (8.46 °Brix), whereas the minimum total titrable acidity (0.35%) and maximum ascorbic content (38.41 mg·100 g–1) were recorded for P. peruviana. The ‘L’ value of fruits, showing brightness, was recorded as the highest for P. peruviana (58.97), whereas fruits of all the species showed a negative ‘a’ value, indicating that none of them produced redness; however, the ‘b’ value, indicating yellowness, was maximum for P. pruinosa (18.72).

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prohens, J. A., Rodrignez, B., Nuez, F., Breeding Andean Solonaceae fruit crops for adaptation to sub-tropical climates, Acta Hortic. 662 (2004) 129130. CrossRefGoogle Scholar
Barker, A.V., Organic vs inorganic nutrition and horticultural crop quality, HortScience 10 (1975) 5053. Google Scholar
Anon., Alternative agriculture, Ntl. Res. Council, Ntl. Acad. Press, Wash., D.C., U.S.A., 1989.
Legge, A.P., Notes on the history, cultivation and uses of Physalis peruviana L., J. R. Hortic. Soc. 99 (7) (1974) 310314. Google Scholar
Cantwell, M., Flores-Minutti, J., Trejo-González, A., Developmental changes and postharvest physiology of tomatillo fruits (Physalis ixocarpa Brot.), Scientia Hortic. 50 (1992) 5970. CrossRefGoogle Scholar
Klinac, D.J., Cape gooseberry (Physalis peruviana) production systems, N. Z. J. Exp. Agric. 14 (1986) 425430. Google Scholar
Anon., Golden berry (Cape gooseberry), in: Off. Int. Aff. (CD), Lost crop of the Incas, little known plants of the Andes will promise for worldwide cultivation, Ntl. Res. Council, Ntl. Acad.Press, Wash., D.C., U.S.A., 1989, 241–251.
Gentry J.L.., Standley P.C., Flora of Guatemala, Part X Solanaceae, Fields Museum of Natural History, Fieldiana, Botany, Vol. 24, No. 1 and 2, Chicago, U.S.A., 1974.
Bailey L.H., Hortus third, a concise dictionary of plants cultivated in the United States and Canada, Macmillan, N.Y., U.S.A., 1976.
Singh, D.B., Lal, S., Ahmed, N., Qureshi, S.N., Pal, A.A., Screening of cape gooseberry (Physalis pereviana) collections for adaptation under temperate ecosystem, Progress. Hortic. 43 (2) (2011) 211214. Google Scholar
Ushar G., A dictionary of plants used by man, Constable & Company Ltd., London, U.K., 1974, 619 p.
Simmons A.F., Growing unusual fruit, David & Charles, Bristol, U.K., 1972, 309 p.
Simmons A.F., Simmons manual of fruit, David & Charles, Bristol, U.K., 1978, 239 p.
Rehm S., Espig G., Fruit, in: Sigmund R., Gustav E. (Eds.), The cultivated plants of the tropics and subtropics, cultivation, economic value, utilization, Verlag Josef Margraf, Weikersheim, Ger., 1991, 169−245.
Fischer, G., Ebert, G., Lüdders, P., Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes, Acta Hortic. 531 (2000) 263267. CrossRefGoogle Scholar
Ramadan, Mohamed Fawzy, Bioactive photochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana), an overview, Food Res. Int. 44 (2011) 18301836. CrossRefGoogle Scholar
Branzati, E.C., Manaresi, L., Alchechengi, Frutticoltura 42 (1980) 34. Google Scholar
Sarangi, D., Sarkar, T.K., Roy, A.K., Jana, S.C., Chattopadhyay, T.K., Physico-chemical changes during growth of Physalis spp., Progress. Hortic. 21 (1989) 225228. Google Scholar
Wu, S.J., Ng, L.T., Huang, Y.M., Lin, D.L., Wang, S.S., Huang, S.N., Lin, C.C., Antioxidant of Physalis peruviana, Biol. Pharm. Bull. 28 (2005) 963966 . CrossRefGoogle ScholarPubMed
Wu, S.J., Ng, L.T., Lin, D.L., Wang, S.S., Lin, C.C., Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and mitochondrial signalling transduction pathway, Cancer Letter 215 (2004) 199208 . CrossRefGoogle Scholar
Arun, M., Asha, V.V., Preliminary studies on antihepatotoxic effects of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats, J. Ethnopharmacol. 111(2007) 110114. CrossRefGoogle ScholarPubMed
Ahmad, S., Malik, A., Yasmin, R., Ullah, N., Gul, W., Khan, P.M., Nawaz, H.R., Afza, N., With anolides from Physalis peruviana, Phytochemistry 50 (1999) 647651. CrossRefGoogle Scholar
Perry L.M., Metzger J., Medicinal plants of East and Southeast Asia, Cambridge, MIT Press, U.K., 1980.
Steinmetz, K.A., Potter, J.D., Vegetables, fruit, and cancer prevention, A review, J. Am. Diet. Assoc. 96 (10) (1996) 10271039. CrossRefGoogle ScholarPubMed
Dinan, L., Sarker, S., Sik, V., 28-Hydroxywithanolide E from Physalis peruviana, Photochemistry 44 (1997) 509512. CrossRefGoogle Scholar
Rop, O., Micek, J., Jurikova, T., Valsikova, M., Bioactive content and antioxidant capacity of cape gooseberry fruit, Cent. Eur. J. Biol. 7 (4) (2012) 672679. Google Scholar
Wang, I.K., Lin-Shiau, S.Y., Lin, J.K., Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaremia HL-60 cells, Eur. J. Cancer 35 (1999) 15171525. CrossRefGoogle Scholar
De Rosso, V.V., Mercadante, A.Z., Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits, J. Agric. Food Chem. 55 (13) (2007) 50625072. CrossRefGoogle Scholar
Nuez, F., Morales, R., Poohens, J., Fernandez de Cordova, P., Soler, S., Valdivicto, E., Solorzanro, V., Germplasm of Solanaceae horticultural university crops in the south of Ecuador, Plant Genet. Res. Newsletter 120 (1999) 4447. Google Scholar
Péron, J.Y., Demaure, E., Hamnetel, C., Les possibilités d’introduction et de développement de solanacées et de cucurbitacées d’origine tropicale en France, Acta Hortic. 242 (1989) 179186. CrossRefGoogle Scholar
Prophens, J., Nuez, F., Aspectos productivos de la introduction de nuevos cultivares de alquequenje (Physalis peruviana L.) en España, Actas Hortic. 12 (1994) 228133. Google Scholar
Dremann C.C., Ground cherries, husk tomatoes and tomatillos, Redwood City seed Co., Redwood City, C.A., U.S.A., 1985, 22 p.
Mazumdar B.C., Cape gooseberry – The jam fruit of India, World crops (U.K.) 31 (1) (1979) pp. 19, 23.
Chattopadyay T.K., A textbook on pomology, Vol.11, Kaiyani Publ., Calcutta, India, 1996.
Bernal J.A., Agronomic aspects of the cultivation of the uchuva, Physalis peruviana, on the high plateau of the Colombian departments of Cundinamarca and Boyaca, in: Hawkes J.G., Lester R.N., Nee M., Estrada N., Solanaceae III, taxonomy, chemistry, evolution, R. Bot. Gard. Kew Linn. Soc. Lond., U.K., 1991, 459–460.
Rangana S., Manual of analysis of fruits and vegetables, Tata M.C., Graw Hill Puv. Co. Ltd., New Delhi, India, 1986.
Panse V.G., Sukhatme P.V., Statistical methods for agricultural workers, ICAR, New Delhi, India, 1985.
Wolff, X.Y., Species, cultivar and soil amendments influence fruit production of two Physalis sp., Hortic. Sci. 26 (12) (1991) 15581559. Google Scholar
Chia C.L., Nishina M.S., Evans D.O., Poha, Hawaii Coop. Ext. Serv. Commod., Fact Sheet-3(A), Hawaii Inst. Trop. Agric. Hum. Resour., Univ. Hawaii, Manoa, Honolulu, 2 p., 1987.
Mazorra, M.F., Quintana, A.P., Miranda, D., Fischer, G., Chaparro de Valencia, M., aspectos anatómicos de la formación y crecimiento del fruto de la uchuva Physalis peruviana (Solanaceae), Acta Biol. Colomb. 11 (1) (2006) 6981. Google Scholar
Gupta, S.K., Roy, S.K., The floral biology of cape gooseberry (Physalis peruviana Linn., Solanaceae, India), Indian J. Agric. Sci. 51 (5) (1981) 353355. Google Scholar
Fischer, G., Ebert, G., Lüdders, P., Production, seeds and carbohydrate contents of Cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes, J. Appl. Bot. Food Qual. 81 (1) (2007) 2935. Google Scholar
Fischer G., Herrera A., Almanza P.J., Cape gooseberry (Physalis peruviana L.) in: Yahia E.M. (Ed.), Postharvest biology and technology of tropical and subtropical fruits, acai to citrus, Woodhead Publ., Oxford, U.K., Vol. 2, 2011, 374–396.
Singh R., Fruits National book trust, 4th ed., New Delhi, India, 1985.
Pal B., Studied on adaptation of Physalis sp. under Punjab conditions, Punjab Agric. Univ., Thesis, Ludhiana, India, 1991.
Chandi A.S., Evaluation of some Cape gooseberry (Physalis peruviana L.) genotypes under Punjab conditions, Guru Nanak Dev Univ., Thesis, Amritsar, Punjab, India, 2000.
Hernándo Bermejo J.E., León J., Neglected crops: 1492 from a different prospective plant protection and production, Series no. 26, FAO, Rome, Italy, 1994, 117–122.
Almanza P., Espinosa C.J., Desarrollo morfológico y análisis fisicoquímico de frutos de uchuva (Physalis peruviana L.) para identificar el momento óptimo de cosecha, Univ. Pedagóg. Tecnol. Colomb., Thesis, Tunja, Colomb., 1995.
Singh, U.R., Pandey, I.C., Prasad, R.S., Grow Cape gooseberry for profit, Indian Hortic. 20 (1) (1976) 931. Google Scholar
Heiser C.B., Of plants and people, Univ. Oklahoma City, Oklahoma, U.S.A., 1975, 129–136.