Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T19:39:19.041Z Has data issue: false hasContentIssue false

Using synthetic emission maps to constrain the structure of the Milky Way

Published online by Cambridge University Press:  06 January 2014

Alex R. Pettitt
Affiliation:
School of Physics & Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL email: alex@astro.ex.ac.uk
Clare L. Dobbs
Affiliation:
School of Physics & Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL email: alex@astro.ex.ac.uk
David M. Acreman
Affiliation:
School of Physics & Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL email: alex@astro.ex.ac.uk
Daniel J. Price
Affiliation:
Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Vic. 3800, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the current standing of an investigation into the structure of the Milky Way. We use smoothed particle hydrodynamics (SPH) to simulate the ISM gas in the Milky Way under the effect of a number of different gravitational potentials representing the spiral arms and nuclear bars, both fixed and time-dependent. The gas is subject to ISM cooling and chemistry, enabling us to track the CO and HI density. We use a 3D grid-based radiative transfer code to simulate the emission from the SPH output, allowing for the construction of synthetic longitude-velocity maps as viewed from the Earth. By comparing these maps with the observed emission in CO and HI from the Milky Way ([Dame et al. 2001, Kalberla et al. 2005]), we can infer the arm/bar geometry that provides a best fit to our Galaxy. By doing so we aim to answer key questions concerning the morphology of the Milky Way such as the number of the spiral arms, the pattern speeds of the bar(s) and arms, the pitch angle of the arms and shape of the bar(s).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Acreman, D. M., Douglas, K. A., Dobbs, C. L., & Brunt, C. M., 2010, MNRAS, 406, 1460Google Scholar
Acreman, D. M., Dobbs, C. L., Brunt, C. M. & Douglas, K. A. 2012, MNRAS, 422, 241Google Scholar
Baba, J., Saitoh, T. R., & Wada, K., 2010, PASJ, 62, 1413Google Scholar
Bate, M. R., Bonnell, I. A., & Price, N. M., 1995, MNRAS, 277, 362Google Scholar
Benz, W., Cameron, A. G. W., Press, W. H., & Bowers, R. L., 1990, ApJ, 348, 647CrossRefGoogle Scholar
Cox, D. P., & Gómez, G. C. 2002, ApJS, 142, 261CrossRefGoogle Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P., 2001, ApJ, 547, 792Google Scholar
Dehnen, W., 2000, ApJ, 119, 800Google Scholar
Dobbs, C. L., Glover, S. C. O., Clark, P. C., & Klessen, R. S. 2008, MNRAS, 389, 1097Google Scholar
Glover, S. C. O. & Mac Low, M.-M., 2007, 169, 239Google Scholar
Gómez, G. C., & Cox, D. P. 2004, ApJ, 615, 758Google Scholar
Harries, T. J. 2000, MNRAS, 315, 722CrossRefGoogle Scholar
Hernquist, L., 1993, ApJs, 86, 1993Google Scholar
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., & Poppel, W. G. L. 2001, A&A, 440, 775Google Scholar
Lodato, G., & Price, D. J., 2010, MNRAS, 405, 1212Google Scholar
Long, K., & Murali, C. 1992, ApJ, 397, 44Google Scholar
Martos, M., Hernandez, X., Yáñez, M., Moreno, E., & Pichardo, B., 2005, MNRAS, 350, L47Google Scholar
Nelson, R. P. & Langer, W. D., 1997, ApJ, 482, 796CrossRefGoogle Scholar
Price, D. J., & Federrath, C., 2010, MNRAS, 406, 2010Google Scholar
Price, D. J., & Monaghan, J. J., 2007, MNRAS, 374, 1347Google Scholar
Rodriguez-Fernandez, N. J. and Combes, F. 2008, A&A, 489, 115Google Scholar
Vallée, J. P., 2008, AJ, 135, 1301.Google Scholar
Wada, K., & Koda, J., 2001, PASJ, 53, 1163Google Scholar
Wang, Y., Zhao, H., Mao, S., & Rich, R. M., 2012, MNRAS, 427, 1429Google Scholar