Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T09:03:21.312Z Has data issue: false hasContentIssue false

Scientific Programmes with India's National Large Solar Telescope and their contribution to Prominence Research

Published online by Cambridge University Press:  06 January 2014

S. S. Hasan*
Affiliation:
Indian Institute of Astrophysics, Bangalore 560034, India email: hasan@iiap.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The primary objective of the 2-m National Large Solar Telescope (NLST) is to study the solar atmosphere with high spatial and spectral resolution. With an innovative optical design, NLST is an on-axis Gregorian telescope with a low number of optical elements and a high throughput. In addition, it is equipped with a high order adaptive optics system to produce close to diffraction limited performance.

NLST will address a large number of scientific questions with a focus on high resolution observations. With NLST, high spatial resolution observations of prominences will be possible in multiple spectral lines. Studies of magnetic fields, filament eruptions as a whole, and the dynamics of filaments on fine scales using high resolution observations will be some of the major areas of focus.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Balasubramanium, K. S., Sankarasubramanian, K & Pevtsov, A. A. 2006, in: Casini, R. & Lites, B. W. (eds.), Solar Polarization 4, ASP Conf. Ser., Vol. 358, p. 68Google Scholar
Casini, R, López Ariste, , Tomczyk, S. & Lites, B. W. 2003, ApJ, 598, L67Google Scholar
Elmore, D. F., Lites, B. W., Tomczyk, S., et al. 1992, in: Goldstein, D. H. & Chipman, R. A. (eds.), Polarization Analysis and Measurement, Proc. SPIE Vol. 1746, p. 22Google Scholar
Gaizauskas, V., Zirker, J. B., Sweetland, C., & Kovacs, A. 1997, ApJ, 479, 448CrossRefGoogle Scholar
Hasan, S. S., Doltau, D., Kärcher, Süss, Berkfeld, T. 2010, AN. 331, 628Google Scholar
Hasan, S. S. 2012, in: Rimmele, T., Collados Vera, M., Berger, T.et al. (eds.), Magnetic Fields from the Photosphere to the Corona, ASP Conf. Ser., Vol. 463, p. 395Google Scholar
Joshi, A. & Srivastava, N. 2011, ApJ, 739, 1Google Scholar
Khomenko, E., Collados, M., Solanki, S. K., Lagg, A., & Trujillo Bueno, J. 2003, A&A, 408, 1115Google Scholar
Kippenhahn, R. & Schlüter, A. 1957, ZfA, 43, 36Google Scholar
Lin, Y. 2011, Space Sci. Rev., 158, 237Google Scholar
Lites, B. W. & Low, B. C. 1997, Solar Phys., 174, 91Google Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. 2010, Space Sci. Rev., 151, 333Google Scholar
Ning, Z, Cao, W. & Goode, P. R. 2009, ApJ, 707, 1124Google Scholar
Okamoto, T. J., Tsuneta, S., Berger, T. E.et al. 2007, Science, 318, 1577CrossRefGoogle Scholar
Okamoto, T. J., Tsuneta, S., Lites, B. W., Kubo, M., Yokoyama, T., Berger, T. E.et al., 2008, ApJ, 673, L215Google Scholar
Shelyag, S., Keys, P., Mathioudakis, M., & Keenan, F. P. 2011, A&A, 526, A5Google Scholar
Sigwarth, M., Berst, C., Gregory, S., et al. 2001, in: Sigwarth, M. (ed.), Advanced Solar Polarimetry: Theory, Observation, and Instrumentation, ASP Conf. Ser. Vol. 236, p. 57Google Scholar
Solanki, S. K., Livingston, W. L. & Ayres, T., Science, 263, 4Google Scholar
Stein, R. F. & Nordlund, A. 2006, ApJ, 642, 1246CrossRefGoogle Scholar
Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., & Linde, T. 2005, A&A, 429, 335Google Scholar
Wang, Y.-M. & Muglach, K. 2007, ApJ, 666, 1284Google Scholar