Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T21:03:53.396Z Has data issue: false hasContentIssue false

Radio Interferometry Observations of the Hallmarks of Planet Formation

Published online by Cambridge University Press:  06 January 2014

Sean M. Andrews*
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, Massachusetts 02138, USA email: sandrews@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some of the fundamental processes involved in the evolution of circumstellar disks and the assembly of planetary systems are just now becoming accessible to astronomical observations. The new promise of observational work in the field of planet formation makes for a very dynamic research scenario, which is certain to be amplified in the coming years as the revolutionary Atacama Large Millimeter/submillimeter Array (ALMA) facility ramps up to full operations. To highlight the new directions being explored in these fields, this brief review will describe how high angular resolution measurements at millimeter/radio wavelengths are being used to study several crucial aspects of the formation and early evolution of planetary systems, including: the gas and dust structures of protoplanetary disks, the growth and migration of disk solids, and the interactions between a young planetary system and its natal, gas-rich disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009, ApJ, 700, 1502CrossRefGoogle Scholar
Andrews, S. M., et al. 2011, ApJ 732 42 (2011a)Google Scholar
Andrews, S. M., Rosenfeld, K. A., Wilner, D. J., & Bremer, M. 2011, ApJ 742 L5 (2011b)CrossRefGoogle Scholar
Andrews, S. M., et al. 2012, ApJ, 744, 162CrossRefGoogle Scholar
Baruteau, C., & Masset, F. 2013, Tides in Astronomy and Astrophysics, Lecture Notes in Physics, eds. Souchay, , Mathis, , & Tokieda, (Springer-Verlag: Berlin), 861, 201Google Scholar
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Güsten, R. 1990, AJ, 99, 924CrossRefGoogle Scholar
Beckwith, S. V. W. & Sargent, A. I. 1991, ApJ 381, 250Google Scholar
Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A 513 79 (2010a)Google Scholar
Birnstiel, T., et al. 2010, A&A 516 L14 (2010b)Google Scholar
Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2011, A&A, 525, 11Google Scholar
Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A 539 148 (2012a)Google Scholar
Birnstiel, T., Andrews, S. M., & Ercolano, B. 2012, A&A 544 79 (2012b)Google Scholar
Brauer, F., et al. 2007, A&A, 469, 1169Google Scholar
Brauer, F., Dullemond, C. P., & Henning, T. 2008, A&A, 480, 859Google Scholar
Brown, J. M., Blake, G. A., Qi, C., Dullemond, C. P., & Wilner, D. J. 2008, ApJ, 675, L109CrossRefGoogle Scholar
Brown, J. M., et al. 2009, ApJ, 704, 496CrossRefGoogle Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, J. C. B. 1999, ApJ, 514, 344CrossRefGoogle Scholar
Crida, A., Morbidelli, A., & Masset, F. 2006, Icarus, 181, 587CrossRefGoogle Scholar
Crida, A. & Morbidelli, A. 2007, MNRAS, 377, 1324Google Scholar
D'Alessio, P., Calvet, N., & Hartmann, L. 2001, ApJ, 553, 321Google Scholar
Dartois, E., Dutrey, A., & Guilloteau, S. 2003, A&A, 399, 773Google Scholar
Dodson-Robinson, S. E. & Salyk, C. 2011, ApJ, 738, 131CrossRefGoogle Scholar
Dong, R., et al. 2012, ApJ, 750, 161Google Scholar
Draine, B. T. 2006, ApJ, 636, 1114Google Scholar
Dutrey, A., et al. 2008, A&A, 490, L15Google Scholar
Espaillat, C., et al. 2007, ApJ, 670, L135CrossRefGoogle Scholar
Espaillat, C., et al. 2010, ApJ, 717, 441Google Scholar
Espaillat, C., et al. 2012, ApJ, 747, 103CrossRefGoogle Scholar
Fang, M., et al. 2009, A&A, 504, 461Google Scholar
Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, ApJ, 524, 867CrossRefGoogle Scholar
Follette, K. B., et al. 2013, ApJ, 767, 10CrossRefGoogle Scholar
Guilloteau, S., Dutrey, A., Piétu, V., & Boehler, Y. 2011, A&A, 529, 105Google Scholar
Harris, R. J., et al. 2013, ApJ, submittedGoogle Scholar
Hildebrand, R. H. 1983, QJRAS, 24, 267Google Scholar
Huélamo, N., Lacour, S., Tuthill, P., Ireland, M., Kraus, A., & Chauvin, G. 2011, A&A, 528, L7Google Scholar
Hughes, A. M., et al. 2007, ApJ, 664, 536CrossRefGoogle Scholar
Hughes, A. M., Wilner, D. J., Qi, C., & Hogerheijde, M. R. 2008, ApJ, 678, 1119CrossRefGoogle Scholar
Hughes, A. M., et al. 2009, ApJ, 698, 131Google Scholar
Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388CrossRefGoogle Scholar
Ida, S., & Lin, D. N. C. 2005, ApJ, 626, 1045Google Scholar
Isella, A., Testi, L., Natta, A., Neri, R., Wilner, D., & Qi, C. 2007, A&A, 469, 213Google Scholar
Isella, A., Carpenter, J. M., & Sargent, A. I. 2009, ApJ, 701, 260CrossRefGoogle Scholar
Isella, A., Carpenter, J. M., & Sargent, A. I. 2010, ApJ, 714, 1746CrossRefGoogle Scholar
Kraus, A. L., Ireland, M. J., Martinache, F., & Hillenbrand, L. A. 2011, ApJ, 731, 8Google Scholar
Kraus, A. L. & Ireland, M. J. 2012, ApJ, 745, 5CrossRefGoogle Scholar
Lubow, S. H., Seibert, M., & Artymowicz, P. 1999, ApJ, 526, 1001CrossRefGoogle Scholar
Lubow, S. H. & D'Angelo, 2006, ApJ, 641, 526CrossRefGoogle Scholar
Kley, W. & Nelson, R. P. 2012, ARAA, 50, 211Google Scholar
Mathews, G. S., Williams, J. P., & Ménard, F. 2012, ApJ, 753, 59CrossRefGoogle Scholar
Mordasini, C., Alibert, Y., Benz, W. 2009, A&A, 501, 1139Google Scholar
Owen, J. E., Ercolano, B., & Clarke, C. J. 2011, MNRAS, 412, 13Google Scholar
Paardekooper, S.-J., & Mellema, G. 2006, A&A, 453, 1129Google Scholar
Panić, O., Hogerheijde, M. R., Wilner, D., & Qi, C. 2009, A&A, 501, 269Google Scholar
Papaloizou, J. C. B., Newlson, R. P., Kley, W., Masset, F. S., & Artymowicz, P. 2007, in Protostars & Planets V, eds. Reipurth, B., Jewitt, D., & Keil, K. (Univ. Arizona Press: Tucson), 655Google Scholar
Pérez, L. M., et al. 2012, ApJ, 760, L17CrossRefGoogle Scholar
Piétu, V., Dutrey, A., Guilloteau, S., Chapillon, E., & Pety, J. 2006, A&A, 460, L43Google Scholar
Piétu, V., Dutrey, A., & Guilloteau, S. 2007, A&A, 467, 163Google Scholar
Pinilla, P., Benisty, M., & Birnstiel, T. 2012, A&A, 545, 81Google Scholar
Pott, J.-U., et al. 2010, ApJ, 710, 265Google Scholar
Qi, C., et al. 2011, ApJ, 740, 84CrossRefGoogle Scholar
Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G. 2006, MNRAS, 373, 1619Google Scholar
Ricci, L., et al. 2010, A&A 512 15 (2010a)Google Scholar
Ricci, L., Testi, L., Natta, A., & Brooks, K. J. 2010, A&A 521 66 (2010b)Google Scholar
Rosenfeld, K. A., et al. 2012, ApJ, 757, 129CrossRefGoogle Scholar
Rosenfeld, K. A., et al. 2013, ApJ 774 16 (2013a)Google Scholar
Rosenfeld, K. A., et al. 2013, ApJ 775 136 (2013b)Google Scholar
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M. 2009, ApJ, 699, 330Google Scholar
Skrutskie, M. F., et al. 1990, AJ, 99, 1187Google Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451CrossRefGoogle Scholar
Takeuchi, T. & Lin, D. N. C. 2002, ApJ, 581, 1344CrossRefGoogle Scholar
Takeuchi, T. & Lin, D. N. C. 2005, ApJ, 623, 482Google Scholar
Weidenschilling, 1977, MNRAS, 180, 57CrossRefGoogle Scholar
Wolf, S. & D'Angelo, G. 2005, ApJ, 619, 1114Google Scholar
Zhu, Z., Nelson, R. P., Hartmann, L., Espaillat, C., & Calvet, N. 2011, ApJ, 729, 47Google Scholar
Zhu, Z., Nelson, R. P., Dong, R., Espaillat, C., & Hartmann, L. 2012, ApJ, 755, 6Google Scholar
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. 2010, A&A, 513, 57Google Scholar