Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T04:59:27.678Z Has data issue: false hasContentIssue false

Dental macro- and microwear in Carinodens belgicus, a small mosasaur from the type Maastrichtian

Published online by Cambridge University Press:  25 March 2014

F.M. Holwerda*
Affiliation:
Bayerische Staatssamlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany(current address) CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-526 Caparica, Portugal
B.L. Beatty
Affiliation:
Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA
A.S. Schulp
Affiliation:
Natuurhistorisch Museum Maastricht, De Bosquetplein 6–7, 6211 KJ Maastricht, the Netherlands Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Teeth of the small durophagous mosasaur Carinodens belgicus are known from Maastrichtian Atlantic-Tethyan deposits worldwide. The peculiar dentition of Carinodens inspired debate and speculation on its dietary niche ever since its first description. In this contribution, we describe the macro- and microwear pattern in five well-preserved isolated teeth, allowing further and independent evaluation of aspects of feeding behaviour and diet. Macroscopically, wear is concentrated on the apex and mesiodistal sides. Microwear was mapped using Scanning Electron Microscopy at several magnifications and can be characterised as scratches and pits. Coarse scratches were found to be the most common and pits were found to be the least common feature. Scratch orientation is primarily along the mesiodistal plane or in the labiolingual plane with an angle of ~130°. These microwear features can be explained either by oral processing or passive abrasion by sediments or food. As scratch width only indicates the minimum width of the abrading particle, the material causing the wear here could have ranged from silica-based silts to larger abrasives. However, in this case, abrasion by sediments might not explain this wear because of the biocalcarenitic nature of the type Maastrichtian sediments; siliciclastics are virtually absent. Therefore it is more likely that hard food particles, such as benthic organisms with hard exoskeletons, caused the wear on the enamel of Carinodens, or Carinodens ventured out to more sandy areas to forage as well. The mesiodistal and labiolingual direction of the microwear scratches might suggest that Carinodens showed more complexity in the use of its teeth than simple grasping, and that a gripping and pulling motion during feeding similar to that employed by modern varanids may have been the cause.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Ashby, M.F., Gibson, L.J., Wegst, U. & Olive, R., 1995. The Mechanical Properties of Natural Materials. I. Material Property Charts. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 450: 123140.Google Scholar
Atkins, A.G., 1982. Topics in indentation hardness. Metal Science 16: 127137.Google Scholar
Auffenberg, W., 1988. Gray's Monitor Lizard. University of Florida Press (Gainesville), 419 pp.Google Scholar
Beatty, B.L., 2007. Dental Microwear as an Indicator of Substrate and Suspended Sediment Interaction: Towards a Finer View of Marine Mammal Paleoecology. Journal of Vertebrate Paleontology 27 (Supplement to 3): 45A.Google Scholar
Beatty, B.L., Castelblanco-Martínez, D.N. & Morales-Vela, B., 2011. Gross dental wear of manatees from Chetumal Bay, Mexico: a beginning to exhaustive studies of the ecological variables affecting tooth wear in marine mammals. Fifth International Sirenian Symposium, Biennial Meeting of the Society for Marine Mammalogy (Tampa).Google Scholar
Beatty, B.L. & Heckert, A.B., 2009. A large archosauriform tooth with multiple supernumerary carinae from the Upper Triassic of New Mexico (USA), with comments on carina development and anomalies in the Archosauria. Historical Biology: An International Journal of Paleobiology 21: 5765.Google Scholar
Buckley, G.A., Brochu, C.A., Krause, D.W. & Pol, D., 2000. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature 405: 941944.Google Scholar
Currey, J.D., 1980. Mechanical properties of mollusc shell. In: Vincent, J.F.V & Currey, J.D. (eds): Symposium of the Society for Experimental Biology XXXIV: The mechanical properties of biological materials. Society for Experimental Biology (Cambridge): 7597.Google Scholar
Currey, J.D., Zioupos, P., Davies, P. & Casinos, A., 2001. Mechanical properties of nacre and highly mineralized bone. Proceedings of the Royal Society of London Biology, 268: 107111.Google Scholar
Cuy, J.L., Mann, A.B. Livi, K.J. Teaford, M.F. & Weihs, T.P., 2002. Nano indentation mapping of the mechanical properties of human molar tooth enamel. Archives of Oral Biology 47: 281291.Google Scholar
Dalrymple, G.H., 1979. On the Jaw Mechanism of the Snail-Crushing Lizards, Dracaena Daudin 1802 (Reptilia, Lacertilia, Teiidae). Journal of Herpetology 13: 303311.Google Scholar
Darvell, B.W., 2009. Materials Science for Dentistry. Woodhead Publishing Limited (Oxford), 662 pp.Google Scholar
Dietrich, R.V., 1969. Mineral Tables – Hand-Specimen Properties of 1500 Minerals. McGraw-Hill Book Company (New York): 237 pp.Google Scholar
Dollo, L., 1913. Globidens Fraasi, Mosasaurien mylodonte nouveau du Maestrichtien (Crétacé supérieur) du Limbourg, l'Ethologie de la Nutrition chez les Mosasauriens. Archives de Biologie 28: 609626.Google Scholar
Erickson, G.M., Krick, B.A., Hamilton, M., Bourne, G.R., Norell, M.A., Lilleodden, E. & Sawyer, W.G., 2012. Complex Dental Structure and Wear Biomechanics in Hadrosaurid Dinosaurs. Science 338: 98101.Google Scholar
Fischer-Cripps, A.C., 2007. Introduction to Contact Mechanics. Springer (New York), 221 pp.Google Scholar
Gordon, K.D., 1984. Microfracture Patterns of Abrasive Wear Striations on Teeth Indicate Directionality. American Journal of Physical Anthropology 63: 315322.Google Scholar
Goswami, A., Flynn, J.J., Ranivoharimanana, L. & Wyss, A.R., 2005. Dental micro wear in Triassic amniotes: Implications for paleoecology and masticatory mechanics. Journal of Vertebrate Paleontology 25: 320329.Google Scholar
Grine, F.E., Ungar, P.S., & Teaford, M.F., 2002. Error rates in Dental Microwear Quantification Using Scanning Electron Microscopy. Scanning 24: 144153.Google Scholar
Jackson, A.P., Vincent, J.F.V & Turner, R.M., 1988. The Mechanical Design of Nacre. Proceedings of the Royal Society B 234: 415440.Google Scholar
Kaddumi, H.F., 2009. Fossils of the Harrana Fauna and the Adjacent Areas. Publications of the Eternal River Museum of Natural History (Amman), 324 pp.Google Scholar
Katti, K.S., Katti, D.R., Tang, J., Pradhan, S. & Sarikaya, M., 2005. Modeling mechanical properties in a laminated biocomposite Part II: Nonlinear responses and nuances of nanostructure. Journal of Materials Science 40: 17491755.Google Scholar
Lawn, B.R., Lee, J. J.-W., Constantino, P.J. & Lucas, P.W., 2009. Predicting failure in mammalian enamel. Journal of the Mechanical Behavior of Biomedical Materials 2: 3342.Google Scholar
Lee, J.J.W, Constantino, P.J., Lucas, P.W. & Lawn B.R., 2011. Fracture in teeth a diagnostic for inferring bite force and tooth function. Biological Reviews 86: 959974.Google Scholar
Lingham-Soliar, T., 1999. The Durophagous Mosasaurs (Lepidosauromorpha, Squamata) Globidens and Carinodens from the Upper Cretaceous of Belgium and the Netherlands. Paleontological Journal 33: 638647.Google Scholar
Lucas, P.W., 2004., Dental Functional Morphology: How Teeth Work. Cambridge University Press (Cambridge), 35 pp.Google Scholar
Mazin, J.-M. & Pinna, G., 1993. Palaeoecology of the armoured placodonts. Paleontologia Lombarda, Nuova Serie 2: 8391.Google Scholar
Meyers, M.A., Lin, A.Y.-M., Chen, P.-Y. & Muyco, J., 2008. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behavior of Biomedical Materials 1: 7685.Google Scholar
Mihlbachler, M.C. & Beatty, B.L., 2012. Magnification and resolution in dental microwear analysis using light microscopy. Palaeontologia Electronica 15: 15.Google Scholar
Mihlbachler, M.C., Beatty, B.L., Caldera-Siu, A., Chan, D. & Lee, R., 2012. Error rates in dental microwear analysis using light microscopy. Palaeontologia Electronica 15: 22.Google Scholar
Moreno, K., Wroe, S., Clausen, P., McHenry, C., D'Amore, D.C., Rayfield, E.J. & Cunningham, E., 2008. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis. Journal of Anatomy 212: 736746.Google Scholar
Motani, R., 2005. Detailed Tooth Morphology in a Durophagous Ichthyosaur Captured by 3D Laser Scanner. Journal of Vertebrate Paleontology 25: 462465.Google Scholar
Mulder, E.W.A, Formanoy, P., Gallagher, W.B., Jagt, J.W.M & Schulp, A.S., 2013. The first North American record of Carinodens belgicus (Squamata, Mosasauridae) and correlation with the youngest in situ examples from the Maastrichtian type area: palaeoecological implications. Netherlands Journal of Geosciences 92: 145152.Google Scholar
O'Connor, P.M., Sertich, J.J.W, Stevens, N.J., Roberts, E.M., Gottfried, M.D., Hieronymus, T.L., Jinnah, Z.A., Ridgely, R., Ngasala, S.E. & Temba, J., 2010. The evolution of mammal-like crocodyliforms in the Cretaceous Period of Gondwana. Nature 466: 748751.Google Scholar
Õsi, A. & Weishampel, D.B., 2009. Jaw mechanism and dental function in the Late Cretaceous basal eusuchian Iharkutosuchus . Journal of Morphology 270: 903920.Google Scholar
Pellegrini, R. & Beatty, B.L., 2011. Enamel and dentine histology of a mosasaur pterygoid tooth: implications for development. Journal of Vertebrate Paleontology, SVP Program and Abstracts Book 2011: 172A.Google Scholar
Poynter, J.M., 2011. Using dental microwear analysis to predict feeding types in Mesozoic marine reptiles. MSc Thesis, Department of Biology, Northwest Missouri State University (Maryville, Missouri), 63 pp.Google Scholar
Purnell, M.A., Hart, P.J.B, Baines, D.C. & Bell. M.A., 2006. Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology 75:967977.Google Scholar
Purslow, P.P., 1991. Measuring meat texture and understanding its structural basis. In: Vincent, J.F.V. & Lillford, P.J. (eds): Feeding and the Texture of Food. Cambridge University Press (Cambridge): 3556.Google Scholar
Rieppel, O., 2002. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society 135: 3363.Google Scholar
Ross, C.F., Eckhardt, A., Herrel, A., Hylander, W.L., Metzger, K.A., Schaerlaeken, V., Washington, R.L. & Williams, S.H., 2007. Modulation of intra-oral processing in mammals and lepidosaurs. Integrative and Comparative Biology 47: 118136.Google Scholar
Rybczynski, N. & Reisz, R.R., 2001. Earliest evidence for efficient oral processing in a terrestrial herbivore. Nature 411: 684687.Google Scholar
Sander, P.M., 1999. The Microstructure of Reptilian Tooth Enamel: Terminology, Function, and Phylogeny. Münchner Geowissenschaftliche Abhandlungen 38: 1102.Google Scholar
Schiøler, P., Brinkhuis, H., Roncaglia, L., & Wilson, G.J., 1997. Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous), ENCI Quarry, the Netherlands. Marine Micropaleontology 31: 6595.Google Scholar
Schubert, B.W. & Ungar, P.S., 2005. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontologica Polonica 50: 9399.Google Scholar
Schulp, A.S., 2005. Feeding the Mechanical Mosasaur: what did Carinodens eat? Netherlands Journal of Geosciences 84: 345357.Google Scholar
Schulp, A.S., Averianov, A.O., Yarkov, A.A., Trikoldi, F.A. & Jagt, J.W.M, 2006. First record of the Late Cretaceous durophagous mosasaur Carinodens belgicus (Reptilia, Squamata) from Volgograd Region (Russia) and Crimea (Ukraine). Russian Journal of Herpetology 13: 175180.Google Scholar
Schulp, A.S., Bardet, N. & Bouya, B., 2010. A new species of the durophagous mosasaur Carinodens (Squamata, Mosasauridae) and additional material of Carinodens belgicus from the Maastrichtian phosphates of Morocco. Netherlands Journal of Geosciences 88: 161167.Google Scholar
Schulp, A.S., Jagt, J.W.M & Fonken, F., 2004. New Material of the Mosasaur Carinodens belgicus from the Upper Cretaceous of the Netherlands. Journal of Vertebrate Paleontology 24: 744747.Google Scholar
Schulp, A.S., Polcyn, M.J., Mateus, O. & Jacobs, L.L., 2013. Two rare mosasaurs from the Maastrichtian of Angola and the Netherlands. Netherlands Journal of Geosciences 92: 310.Google Scholar
Schulp, A. & Vonhof, H., 2010. 13C isotope analysis of the type Maastrichtian mosasaurs. Journal of Vertebrate Paleontology 30 (Supplement to 3): 159A.Google Scholar
Schulp, A., Vonhof, H.B., Van der Lubbe, J.H.J.L., Janssen, R., Van Baal, R.R., 2013. On diving and diet: resource partitioning in type-Maastrichtian mosasaurs. Netherlands Journal of Geosciences 92: 165169.Google Scholar
Sereno, P.C., Wilson, J.A., Witmer, L.M., Whitlock, J.A., Maga, A., Oumarou, I. & Rowe, T.A., 2007. Structural Extremes in a Cretaceous Dinosaur. PLoS ONE 2 (11): e1230Google Scholar
Smith, J.B., Dodson, P., 2003. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23: 112.Google Scholar
Varriale, F., 2011. Dental Microwear and the Evolution of Chewing in Ceratopsian Dinosaurs. Journal of Vertebrate Paleontology, SVP Program and Abstracts Book 2011: 209A.Google Scholar
Whitlock, J., 2011. Inferences of Diplodocoid (Sauropoda: Dinosauria) Feeding Behavior from Snout Shape and Microwear Analyses. PLoS ONE, 6 (4): e18304. doi: 18310.11371/journal.pone.0018304.Google Scholar
Williams, V.S., Barrett, P.M. & Purnell, M.A., 2009. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding. Proceedings of the National Academy of Sciences, 106: 1119411199.Google Scholar
Xu, H.H.K, Smith, D.T., Jahanmir, S., Romberg, E., Kelly, J.R., Thompson, V.P. & Rekow, E.D., 1998. Indentation damage and mechanical properties of human enamel and dentin. Journal of Dental Research 77: 472480.Google Scholar
Young, M.T., Brusatte, S.L., Beatty, B.L., Andrade, M.B.D & Desojo, J.B., (2012). Tooth-on-tooth interlocking occlusion suggests macrophagy in the Mesozoic marine crocodylomorph Dakosaurus. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 295: 11471158.Google Scholar