The Journal of Symbolic Logic

Research Article

Einkleidung der Mathematik in Schröderschen Relativkalkul

Leopold Löwenheim

Berlin-Lankwitz

Bei dem Bestreben, die Mathematik zu logisieren, erschienen die von Russell u.a. entdeckten Paradoxieen als das größte Hindernis. Zu ihrer Überwindung wurde die Typentheorie von Russell aufgestellt, die aber auch in ihrer gemilderten Form die Mathematiker nicht befriedigt. Ich bin diesen Schwierigkeiten nie begegnet, und zwar deshalb nicht, weil logisieren für mich immer bedeutet hat: in Schröderschen Relativkalkul einkleiden.

Ich bedaure es aus mehr als einem Grunde schwer, daß man von dem eleganten Peirce-Schröderschen Kalkul abgewichen ist und die Peano-Russellschen Zeichen benutzt, in denen aus bestimmten (m.A.n. nicht stichhaltigen) Gründen die sonst selbstverständliche Harmonie und Schönheit der Mathematik preisgegeben wurde, wodurch die Forschung ziemlich einseitig in eine bestimmte Richtung gedrängt wurde (in der freilich Hochbedeutendes geleistet wurde) während beim Peirce-Schröderschen Kalkul auf Schönheit besonderer Wert gelegt und mit wunderbarer Instinktsicherheit gerade das mathematisch Bedeutsame und Fruchtbare getroffen wurde. Ich bin der Überzeugung, daß in Wissenschaft und Technik das Zweckmäßige immer auch zugleich das Schöne ist. Mit Russells Zeichen hätte ich manches nicht entdeckt, was ich gefunden habe, und besäße jedenfalls nicht meine grosse Kalkulfreudigkeit. Ungünstige Zeichen lähmen die Produktivität. Der heutige Logikkalkul entbehrt daher jeder Eleganz und Geschmeidigkeit, was ganz und gar nicht in der Natur der Sache liegt. Meine Bemühungen, bestimmte Teile des Kalkuls flüssiger, geschmeidiger zu handhaben, sind unbeachtet geblieben.

(Received September 04 1939)