The Journal of Symbolic Logic

Research Article

A simple maximality principle

Joel David Hamkins

Department of Mathematics, The College of Staten Island of Cuny

Department of Mathematics, The Graduate Center of Cuny, 365 Fifth Avenue, New York, New York 10016, USA, E-mail: jdh@hamkins.org, URL: http://jdh.hamkins.org

Abstract

In this paper, following an idea of Christophe Chalons, I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence φ holding in some forcing extension V and all subsequent extensions V ℙ*ℚ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme (◊ □ φ) ⇒ □ φ, and is equivalent to the modal theory S5. In this article, I prove that the Maximality Principle is relatively consistent with ZFC. A boldface version of the Maximality Principle, obtained by allowing real parameters to appear in φ, is equiconsistent with the scheme asserting that V δV for an inaccessible cardinal δ, which in turn is equiconsistent with the scheme asserting that ORD is Mahlo. The strongest principle along these lines is □ , which asserts that holds in V and all forcing extensions. From this, it follows that 0# exists, that x # exists for every set x, that projective truth is invariant by forcing, that Woodin cardinals are consistent and much more. Many open questions remain.

(Received February 12 2002)

(Revised October 28 2002)