Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T15:45:25.343Z Has data issue: false hasContentIssue false

Benthic diversity and assemblage structure of a north Patagonian rocky shore: a monitoring legacy of the NaGISA project

Published online by Cambridge University Press:  13 August 2013

M.E. Rechimont
Affiliation:
Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
D.E. Galván
Affiliation:
Laboratorio de Ecología y Manejo de Peces de Arrecife, CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M.C. Sueiro
Affiliation:
Grupo de Ecología en Ambientes Costeros, CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
G. Casas
Affiliation:
Laboratorio de Algas Marinas, Grupo de Ecología en Ambientes Costeros (GEAC), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M.L. Piriz
Affiliation:
Laboratorio de Algas Marinas, Grupo de Ecología en Ambientes Costeros (GEAC), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M.E. Diez
Affiliation:
Laboratorio de Parasitología, CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M. Primost
Affiliation:
Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M.S. Zabala
Affiliation:
Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
F. Márquez
Affiliation:
Biología evolutiva de moluscos marinos, CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
M. Brogger
Affiliation:
Laboratorio de Ecosistemas Costeros, MACN–CONICET, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Avenida Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
J.E.F. Alfaya
Affiliation:
Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
G. Bigatti*
Affiliation:
Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
*
Correspondence should be addressed to: G. Bigatti, Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM), CENPAT–CONICET, Bvd Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina email: gbigatti@cenpat.edu.ar

Abstract

The rocky shore of Punta Este, Golfo Nuevo (Patagonia, Argentina), was sampled by means of the standardized NaGISA (CoML) protocol, that was aimed to generate biodiversity baseline data in six levels, from high intertidal to 10 m depth. Based on the generated data, we analysed the benthic assemblage structure, species richness, mean abundance and the distribution pattern of invertebrate functional groups, typifying species in each intertidal and subtidal level. The intertidal sampled is exposed to extreme physical conditions higher than any other rocky shore system studied, with air temperature variation of 40°C during the year, maximum winds of 90 km/h and semidiurnal tides of 5 m amplitude; on the other hand subtidal presents less thermal variation (ΔT 10°C throughout the year) and more homogeneous physical conditions. We identified 64 taxa represented by six animal phyla: Mollusca, Arthropoda, Annelida (Polychaeta), Echinodermata, Cnidaria and Nemertea; and three algal phyla: Chlorophyta, Rhodophyta and Heterokontophyta (class: Phaeophyceae). Ordination non-metric multidimensional scaling plots showed three different assemblages in terms of species composition (intertidal, subtidal 1 m level and subtidal 5–10 m levels). The intertidal was represented by suspension feeders, mainly Mollusca. The tiny mussels Brachidontes rodriguezii and Brachidontes purpuratus, and the algae Corallina officinalis dominated the intertidal and promote positive interaction (amelioration), preventing other species from the extreme physical stress. The subtidal was mainly represented by grazers. Our results showed a tendency of suspension feeders to decrease and grazers and predators to increase from high intertidal to subtidal, probably driven by decreasing physical stress. The gastropod Tegula patagonica, the sea urchins Arbacia dufresnii and Pseudechinus magellanicus and the invasive algae Undaria pinnatifida were the most abundant species in 1 m–10 m levels. Based on previous work performed in the region, we hypothesize that the differences registered between intertidal and subtidal levels could be explained in part by an increase in physical stress at the intertidal, with low predation pressure that promotes positive interactions, while in the subtidal the increase in consumers and decrease of physical stress could lead to associational defences. Our results could be useful as baseline data to develop a sustainable network for long-term monitoring of benthic community changes due to anthropogenic activities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adami, M.L., Tablado, A. and Sodor, M.A. (2008) Population dynamics of the intertidal mytilid Brachidontes rodriguezii (Bivalvia) on a rocky shore. Thalassas 24, 2127.Google Scholar
Bertness, M.D. (1999) Rocky shores. In The ecology of Atlantic rocky shorelines. Sunderland: Sinauer Associates, pp. 177247.Google Scholar
Bertness, M.D. and Callaway, R. (1994) Positive interactions in communities. Trends in Ecology & Evolution 9, 191193.Google Scholar
Bertness, M.D., Crain, C.M., Silliman, B.R., Bazterrica, M.C., Reyna, M.V., Hidalgo, F. and Farina, J.K. (2006) The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs, 76, 439460.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Cruz-Mota, J.J., Miloslavich, P., Palomo, G., Iken, K., Konar, B., Pohle, G., Trott, T., Benedetti-Cecchi, L., Herrera, A., Hernandez, A., Sardi, A., Bueno, J., Castillo, E., Klein, E., Guerra-Castro, E., Gobin, J., Gomez, D.I., Riosmena-Rodriguez, R.l., Mead, A., Bigatti, G., Knowlton, A.L. and Shirayama, Y. (2010) Patterns of spatial variation of assemblages associated with intertidal rocky shores: a global perspective. PLoS ONE 5(12), e14354.Google Scholar
Cuevas, J.M., Martin, J.P. and Bastida, R. (2006) Benthic community changes in a patagonian intertidal: a forty years later comparison. Thalassas 22, 2937.Google Scholar
Darling, E. and Côté, I. (2008) Quantifying the evidence for ecological synergies. Ecology Letters 11, 12781286.Google Scholar
Díaz, P., López Gappa, J.J. and Piriz, M.L. (2002) Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Botanica Marina 45, 267273.Google Scholar
Dittman, D. and Robles, C. (1991) Effect of algal epiphytes on the mussel Mytilus californianus . Ecology, 72, 286296.Google Scholar
Gelin, A., Gravez, V. and Edgar, G.J. (2003) Assessment of Jessica oil spill impacts on intertidal invertebrate communities. Marine Pollution Bulletin 46, 13771384.Google Scholar
Iken, K. and Konar, B. (2003) Natural Geography in nearshore areas (NaGISA): the nearshore component of the census of marine life. Gayana 67, 153160.Google Scholar
Irigoyen, A.J., Trobbiani, G., Sgarlatta, M.P. and Raffo, M.P. (2010) Effects of the alien algae Undaria pinnatifida (Phaeophyceae, Laminariales) on the diversity and abundance of benthic macrofauna in Golfo Nuevo (Patagonia, Argentina): potential implications for local food webs. Biological Invasions 1, 15211532.Google Scholar
Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R., Cooke, R., Erlandson, J., Estes, J.A., Hughes, T.P., Kidwell, S., Lange, C.B., Lenihan, H.S., Pandolfi, J.M., Peterson, C.H., Steneck, R.S., Tegner, M.J. and Warner, R.R. (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629637.CrossRefGoogle ScholarPubMed
Kelaher, B.P., Castilla, J.C., Prado, L., York, P., Schwindt, E. and Bortolus, A. (2007) Spatial variation in molluscan assemblages from corraline turf of Argentinean Patagonia. Journal of Molluscan Studies 73, 139146.Google Scholar
Labraga, J.C. and De Davies, E.C. (updated 2013) Datos de la estación meteorológica del Centro Nacional Patagónico (CONICET), Puerto Madryn (42°46′S; 65°02′W), Chubut, Argentina. Available at: http://www.cenpat.edu.ar/fisicambien/climaPM.htm (accessed 10 July 2013).Google Scholar
Lohse, D.P. (1993) The importance of secondary substratum in a rocky intertidal community. Journal of Experimental Marine Biology and Ecology 166, 117.CrossRefGoogle Scholar
López Gappa, J.J., Tablado, A. and Magaldi, N.H. (1990) Influence of sewage pollution on a rocky intertidal community dominated by the mytilid Brachydontes rodriguezii . Marine Ecology Progress Series 63, 163175.Google Scholar
López Gappa, J.J., Tablado, A. and Magaldi, N.H. (1993) Seasonal Changes in an intertidal community affected by sewage pollution. Environmental Pollution 82, 157165.Google Scholar
Miloslavich, P., Klein, E., Díaz, J.M., Henández, C.E., Bigatti, G., Campos, L., Artigas, F., Castillo, J., Penchaszadeh, P., Eneill, P.E., Carranza, A., Retana, M.V., Díaz de Astarloa, J.M., Lewis, M., Yorio, P., Piriz, M.L., Rodríguez, D., Yoneshigue-Valentín, Y., Gamboa, L. and Martín, A. (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS ONE 6(1), e14631.Google Scholar
Miloslavich, P., Cruz-Motta, J.J., Klein, E., Iken, K., Weinberger, V., Konar, B., Trott, T., Pohle, G., Bigatti, G., Benedetti-Cecchi, L., Shirayama, Y., Mead, A., Palomo, G., Ortiz, M., Gobin, J., Sardi, A., Díaz, J.M., Knowlton, A., Wong, M. and Peralta., A.C. (in press) Large-scale spatial distribution patterns of gastropod assemblages in rocky shores. PLoS ONE.Google Scholar
Olivier, S., Paternoster, I.K. and Bastida, R. (1966) Estudios biocenóticos en las costas de Chubut (Argentina). I. Zonación biocenológica de Puerto Pardelas (Golfo Nuevo). Instituto de Biología Marina 10, 174.Google Scholar
Orensanz, J.M., Schwindt, E., Pastorino, G., Bortolus, A., Casas, G., Darrigran, G., Elias, P.J., López Gappa, J.J., Obenat, S., Pascual, M., Penchaszadeh, P., Piriz, M.L., Scarabino, F., Spivak, E.D. and Vallarino, E.A. (2002) No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biological Invasions 4, 115143.Google Scholar
Paine, R.T. (1996) Food web complexity and species diversity. American Naturalist 100, 6575.CrossRefGoogle Scholar
Paruelo, J.M., Beltran, A., Jobbagy, Sala, O.E. and Golluscio, R.A. (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85101.Google Scholar
Penchaszadeh, P.E. (1973) Ecología de la comunidad del mejillín (Brachydontes rodriguezi d'Orb.) en el mediolitoral rocoso de Mar del Plata (Argentina): el proceso de recolonización. Physis, Sección A, 32, 5164.Google Scholar
Ragnarsson, S.A. and Raffaelli, D. (1999) Effects of the mussel Mytilus edulis L. on the invertebrate fauna of sediments. Journal of Experimental Marine Biology and Ecology 241, 3143.Google Scholar
Rechimont, M.E. (2011) Patrón de distribución y abundancia de invertebrados bentónicos en costas del Golfo Nuevo. In Facultad de Ciencias Naturales, Puerto Madryn: Universidad Nacional de la Patagonia. Degree thesis, 69 pp.Google Scholar
Rigby, P.R., Iken, K. and Shirayama, Y. (2007) Sampling biodiversity in coastal communities: NaGISA protocols for seagrass and macroalgal habitats. Kyoto: Kyoto University Press.Google Scholar
Rigby, P.R., Kato, T. and Shirayama, Y. (2000) An introduction to the Natural Geography In Shore Areas (NaGISA) project. Kyoto: Seto Marine Biological Laboratory, Kyoto University.Google Scholar
Rivas, A.L. and Beier, E.J. (1990) Temperature and salinity fields in the north patagonic Gulf. Oceanológica Acta 13, 1520.Google Scholar
Seed, R. and Suchanek, T.H. (1992) Population and community ecology of Mytilus. In Gosling, E.M. (ed.) The mussel Mytilus . B.V., Amsterdam: Elsevier Science Publishers, pp. 87169.Google Scholar
Silliman, B.R., Bertness, M.D., Altieri, A.H., Griffin, J.N., Bazterrica, M.C., Hidalgo, F.J., Crain, C.M. and Reyna, M.V. (2011) Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PloS ONE 6, e24502.CrossRefGoogle ScholarPubMed
Smith, J.R., Fong, P. and Ambrose, R.F. (2006) Dramatic declines in mussel bed community diversity: response to climate change? Ecology 87, 11531161.Google Scholar
Smith, S.D.A. and Simpson, R.D. (1995) Effects of the ‘Nella Dan’ oil spill on the fauna of Durvillaea antarctica holdfasts. Marine Ecology Progress Series 121, 7389.Google Scholar
Sueiro, M.C., Bortolus, A. and Schwindt, E. (2011) Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgoland Marine Research 65, 467477.Google Scholar
Teso, S.V., Bigatti, G., Casas, G., Piriz, M.L. and Penchaszadeh, P. (2009) Do native grazers from Patagonia, Argentina consume the invasive kelp Undaria pinnatifida? Revista del Museo Argentino de Ciencias Naturales 11, 714.Google Scholar
Torres, A. and Caille, G. (2009) The hard-bottom intertidal communities before and after removal of an anthropogenic disturbance: a case study in the coast of Puerto Madryn (Patagonia, Argentina). Revista de Biología y Oceanografía 44, 517521.Google Scholar
Trovant, B., Ruzzante, D.E., Basso, N.G., and Orensanz, J.M. (2013) Distinctness, phylogenetic relations and biogeography of intertidal mussels (Brachidontes, Mytilidae) from the south-western Atlantic. Journal of the Marine Biological Association of the United Kingdom (Firstview), 113. doi:10.1017/S0025315413000477.Google Scholar
Vallarino, E.A. (2002) La comunidad bentónica intermareal de Brachidontes rodriguezii (D'Orb.) y su relación con el efluente cloacal de la ciudad de Mar del Plata (38°S). PhD thesis. Universidad de Mar del Plata.Google Scholar
Vallarino, E.A., Rivero, M.S., Gravina, M.C. and Elías, R. (2002) The community-level response to sewage impact in intertidal mytilid beds of the Southwestern Atlantic and the use of the Shannon index to assess pollution. Revista de Biología Marina y Oceanografía 37, 2533.Google Scholar
Van der Molen, S., Márquez, F., Idaszkin, Y.L. and Adami, M. (2013) Use of shell-shape to discriminate between Brachidontes rodriguezii and Brachidontes purpuratus species (Mytilidae) in the transition zone of their distributions (south-western Atlantic). Journal of the Marine Biological Association of the United Kingdom 93, 803808.Google Scholar
Underwood, A.J. (2000) Experimental ecology of rocky intertidal habitats: What are we learning? Journal of Experimental Marine Biology and Ecology 250, 5176.Google Scholar