Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T02:06:57.947Z Has data issue: false hasContentIssue false

Variation in the nanoindentation hardness of platinum

Published online by Cambridge University Press:  22 October 2013

M.R. Maughan
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045
H.M. Zbib
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920
D.F. Bahr*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045
*
a)Address all correspondence to this author. e-mail: dfbahr@purdue.edu
Get access

Abstract

Pure platinum was probed with a nanoindenter fitted with a Berkovich tip to various depths. The indent pattern was made on the as-polished specimen prior to heat treating, after heat treating at 500 °C for 30 min, and again after further heat treating at 1000 °C for 30 min. The variability in the measured hardness decreased as the indentation depth increased from 50 to 300 nm. When the sampled was annealed, the hardness variation was also greater. Increasing hardness variation with decreasing dislocation density and sampling volume indicates that dislocation density plays a critical role in the observed variation, beyond solely instrumentation uncertainty, and supports a defect-based explanation for the stochastic behavior. It appears that the stochastic behavior occurs when multiple dislocations are present in the sampled volume rather than sampling only a single dislocation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tanner, D.M., Parson, T.B., Corwin, A.D., Walraven, J.A., Wittwer, J.W., Boyce, B.L., and Winzer, S.R.: Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806 (2007).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).CrossRefGoogle Scholar
Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).CrossRefGoogle Scholar
Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2002).CrossRefGoogle Scholar
Dub, S.N., Lim, Y.Y., and Chaudhri, M.M: Nanohardness of high purity Cu (111) single crystals: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107, 043510 (2010).CrossRefGoogle Scholar
Srivatsan, T.S., Ravi, B.G., Naruka, A.S., Riester, L, Yoo, S., and Sudarshan, T.S.: A study of microstructure and hardness of bulk copper sample obtained by consolidating nanocrystalline powders using plasma pressure compaction. Mater. Sci. Eng., A 311, 22 (2001).CrossRefGoogle Scholar
Chen, Y. and Hunter, I.W.: Stochastic system identification of skin properties: Linear and wiener static nonlinear methods. Ann. Biomed. Eng. 40, 2242 (2012).CrossRefGoogle ScholarPubMed
Romasco, A.L., Friedman, L.H., Fang, L., Meirom, R.A., Clark, T.E., Polcawich, R.G., Pulskamp, J.S., Dubey, M., and Muhlstein, C.L.: Deformation behavior of nanograined platinum films. Thin Solid Films 518, 3866 (2010).CrossRefGoogle Scholar
Lee, H., Coutu, R.A., Mall, S., and Leedy, K.D.: Characterization of metal and metal alloy films as contact materials in MEMS switches. J. Micromech. Microeng. 16, 557 (2006).CrossRefGoogle Scholar
Read, D.T., Keller, R.R., Barbosa, N., and Geiss, N.: Nanoindentation round robin on thin film copper on silicon. Metall. Mater. Trans. A 38, 2242 (2007).CrossRefGoogle Scholar
Hay, J.C., Bolshakov, A., and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14(6), 2296 (1999).CrossRefGoogle Scholar
Hou, X.D., Bushby, A.J., and Jennett, N.M.: Direct measurement of surface shape for validation of indentation deformation and plasticity length-scale effects: A comparison of methods. Meas. Sci. Technol. 21, 115015 (2010).CrossRefGoogle Scholar
Bobji, M.S., Biswas, S.K., and Pethica, J.B.: Effect of roughness on the measurement of nanohardness: A computer simulation study. Appl. Phys. Lett. 71(8), 1059 (1997).CrossRefGoogle Scholar
Gerberich, W.W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleodden, E., and Nelson, J.: Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations. J. Mater. Res. 13(2), 421 (1998).CrossRefGoogle Scholar
Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200(14–15), 4153 (2005).CrossRefGoogle Scholar
Zbib, A.A. and Bahr, D.F.: Dislocation nucleation and source activation during nanoindentation yield points. Metall. Mater. Trans. A 37, 2249 (2007).CrossRefGoogle Scholar
Trtik, P., Munch, B., and Lura, P.: A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem. Concr. Compos. 31, 705 (2009).CrossRefGoogle Scholar
Mook, W.M., Niederberger, C., Bechelany, M., Philippe, L., and Michler, J.: Compression of freestanding gold nanostructures: From stochastic yield to predictable flow. Nanotechnology 21, 055701 (2010).CrossRefGoogle ScholarPubMed
Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).CrossRefGoogle Scholar
Morris, J.R., Bei, H., Pharr, G.M., and George, E.P.: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2001).CrossRefGoogle Scholar
Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617621 (2005).CrossRefGoogle ScholarPubMed
Biener, M.M., Biener, J., Hodge, A.M., and Hamza, A.V.: Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B. 76, 165422 (2007).CrossRefGoogle Scholar
Salehinia, I. and Bahr, D.F.: The impact of a variety of point defects on the inception of plastic deformation in dislocation-free metals. Scr. Mater. 66, 339 (2012).CrossRefGoogle Scholar
Salehinia, I., Perez, V., and Bahr, D.F.: Effect of vacancies on incipient plasticity during contact loading. Philos. Mag. 92(5), 550 (2012).CrossRefGoogle Scholar
Salehinia, I. and Medyanik, S.N.: Effects of vacancies on the onset of plasticity in metals: An atomistic simulation study. Metall. Mater. Trans. A 42, 3868 (2011).CrossRefGoogle Scholar
Barnoush, A.: Correlation between dislocation density and nanomechanical response during nanoindentation. Acta Mater. 60, 1268 (2012).CrossRefGoogle Scholar
Zhang, B., Wang, W., and Zhang, G.P.: Depth dependent hardness variation in Ni–P amorphous film under nanoindentation. Mater. Sci. Technol. 22(6), 734 (2006).CrossRefGoogle Scholar
Farges, G. and Degout, D.: Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials. Thin Solid Films 181, 365 (1989).CrossRefGoogle Scholar
Durst, K., Franke, O., Böhner, A., and Göken, M.: Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007).CrossRefGoogle Scholar
Pharr, G.M., Herbert, E.G., and Gao, Y.: The indentation size effect: Critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).CrossRefGoogle Scholar
Elmustafa, A.A., Eastman, J.A., Rittner, M.N., Weertman, J.R., and Stone, D.S.: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000).CrossRefGoogle Scholar
Lim, Y.Y. and Chaudhri, M.M.: The influence of grain size on the indentation hardness of high-purity copper and aluminium. Philos. Mag. 82(10), 2071 (2002).CrossRefGoogle Scholar
International Standard ISO 14577-2: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 2: Verification and Calibration of Testing Machines, 1st ed., ISO, 2002.Google Scholar
Craig, B.D. and Anderson, D.S.: Handbook of Corrosion Data, 2nd ed. (A.S.M. International, Materials Park, OH, 2002), pp. 7677.Google Scholar
Powell, A.R.: Behavior of the platinum metals at high temperatures. Platinum Met. Rev. 2(3), 95 (1958).Google Scholar
International Standard ISO 14577-1: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 1: Test Method, 1st ed., ISO, 2002.Google Scholar
Bahr, D.F. and Morris, D.J.: Nanoindentation: Localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, edited by Sharpe, W.N. (Springer, New York, 2008), pp. 389408.CrossRefGoogle Scholar
Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W.: Microscopy and microindentation mechanics of single crystal Fe-3 wt.% Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8(6), 1291 (1993).CrossRefGoogle Scholar
Cordill, M.J., Moody, N.R., and Gerberich, W.W.: Effects of dynamic indentation on the mechanical response of materials. J. Mater. Res. 23(6), 1604 (2008).CrossRefGoogle Scholar
Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(3), 653 (2009).CrossRefGoogle Scholar
Cordill, M.J., Lund, M.S., Parker, J., Leighton, C., Nair, A.K., Farkas, D., Moody, N.R., and Gerberich, W.W.: The nano-jackhammer effect in probing near-surface mechanical properties. Int. J. Plast. 25, 2045 (2009).CrossRefGoogle Scholar
Sui, K.W. and Ngan, A.H.W.: The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag. 93(5), 449 (2013).Google Scholar
Van Belle, G. and Martin, D.C.: Sample size as a function of coefficient of variation and ratio of means. The American Statistician 47(3), 165 (1993).Google Scholar
Nix, W.D. and Gao, H.Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1997).CrossRefGoogle Scholar
Gerberich, W.W., Tyamiak, N.I., Grunlan, J.C., Horstemeyer, M.F., and Baskes, M.I.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433 (2002).CrossRefGoogle Scholar
Danas, K., Deshpande, V.S., and Fleck, N.A.: Size effects in the conical indentation of an elasto-plastic solid. J. Mech. Phys. Solids 60, 1605 (2012).CrossRefGoogle Scholar
Ma, L., Morris, D.J., Jennerjohn, S.L., Bahr, D.F., and Levine, L.: Finite element analysis and experimental investigation of the Hertzian assumption on the characterization of initial plastic yield. J. Mater. Res. 24, 10591068 (2009).CrossRefGoogle Scholar
Voost, J.J. and Nix, W.D.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 76(5), 1045 (1993).Google Scholar
Bhakhri, V. and Klassen, R.J.: The depth dependence of the indentation creep of polycrystalline gold at 300 K. Scr. Mater. 55, 395 (2006).CrossRefGoogle Scholar
Syed Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. 76(6), 1105 (1997).CrossRefGoogle Scholar
Norfleet, D.M., Dimiduk, D.M., Polasik, S.J., Uchic, M.D., and Mills, M.J.: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).CrossRefGoogle Scholar
Schneider, A.S., Kiener, D., Yakacki, C.M., Maier, H.J., Gruber, P.A., Tamura, N., Kunz, M., Minor, A.M., and Frick, C.P.: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng., A 559, 147 (2013).CrossRefGoogle Scholar
Shao, S., Abdolrahim, N., Bahr, D.F., Lin, G., and Zbib, H.M.: Stochastic effects in plasticity in small volumes. Int. J. Plast. (2013, accepted). DOI: 10.1016/j.ijplas.2013.09.005Google Scholar
Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., and Arzt, E.: Size effect of strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).CrossRefGoogle Scholar
Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar