Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T05:32:04.728Z Has data issue: false hasContentIssue false

Engineering social contagions: Optimal network seeding in the presence of homophily

Published online by Cambridge University Press:  30 July 2013

SINAN ARAL
Affiliation:
MIT Sloan School of Management, 100 Main Street, Cambridge, MA 02139, USA (e-mail: sinana@mit.edu)
LEV MUCHNIK
Affiliation:
Hebrew University of Jerusalem School of Business Administration, 5102b, Jerusalem, Israel91905 (e-mail: lev.muchnik@huji.ac.il)
ARUN SUNDARARAJAN
Affiliation:
NYU Stern School of Business, 44 West 4th Street Room 8-93, New York, NY 10012, USA (e-mail: arun@stern.nyu.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use data on a real, large-scale social network of 27 million individuals interacting daily, together with the day-by-day adoption of a new mobile service product, to inform, build, and analyze data-driven simulations of the effectiveness of seeding (network targeting) strategies under different social conditions. Three main results emerge from our simulations. First, failure to consider homophily creates significant overestimation of the effectiveness of seeding strategies, casting doubt on conclusions drawn by simulation studies that do not model homophily. Second, seeding is constrained by the small fraction of potential influencers that exist in the network. We find that seeding more than 0.2% of the population is wasteful because the gain from their adoption is lower than the gain from their natural adoption (without seeding). Third, seeding is more effective in the presence of greater social influence. Stronger peer influence creates a greater than additive effect when combined with seeding. Our findings call into question some conventional wisdom about these strategies and suggest that their overall effectiveness may be overestimated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

References

Abrahamson, E., & Rosenkopf, L. (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science, 8 (3), 289309.CrossRefGoogle Scholar
Aral, S. (2011). Identifying social influence: A comment on opinion leadership and social contagion in new product diffusion. Marketing Science, 30 (2), 217223.CrossRefGoogle Scholar
Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 2154421549. doi:10.1073/pnas.0908800106Google Scholar
Aral, S., & Taylor, S. (2011). Viral incentive systems: A randomized field experiment. Workshop on Information Systems Economics (WISE), December 7–9, Shanghai, China.Google Scholar
Aral, S. & Van Alstyne, M. (2011). The diversity-bandwidth tradeoff. American Journal of Sociology, 117 (1), 90171.CrossRefGoogle Scholar
Aral, S., & Walker, D. (2011). Creating social contagion through viral product design: A randomized trial of peer influence in networks. Management Science, 57 (9), 16231639.Google Scholar
Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science, 337 (6092), 337341. doi:10.1126/science.1215842CrossRefGoogle ScholarPubMed
Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012a). Social influence in social advertising: Evidence from field experiments. Proceedings of the 13th ACM Conference on Electronic Commerce (EC), June 8–12, Valencia, Spain.Google Scholar
Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012b). The role of social networks in information diffusion. Proceedings of the 21st International Conference on World Wide Web (WWW), April 16–20, Lyon, France.Google Scholar
Barabási, L. (2002). Linked: How Everything is Connected to Everything Else and What it Means for Business, Science and Everyday Life. New York: Penguin Group.Google Scholar
Barthélemy, M., Barrat, A., Pastor-Satorras, R., & Vespignani, A. (2004). Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Physical Review Letters, 92 (17), 178701. doi:10.1103/PhysRevLett.92.178701CrossRefGoogle ScholarPubMed
Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15 (5), 215227. doi:10.1287/mnsc.15.5.215CrossRefGoogle Scholar
Becker, M. H. (1970). Factors affecting diffusion of innovations among health professionals. American Journal of Public Health, 60 (2), 294304.Google Scholar
Biyalogorsky, E., Gerstner, E., & Libai, B. (2008). Customer referral management: Optimal reward programs. Marketing Science, 20 (1), 8295.CrossRefGoogle Scholar
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27 (1), 5571. doi:10.1016/j.socnet.2004.11.008Google Scholar
Buttle, F. A. (1998). Word of mouth: Understanding and managing referral marketing. Journal of Strategic Marketing, 6 (3), 241254.CrossRefGoogle Scholar
Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329 (5996), 11941197.Google Scholar
Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334 (6060), 12691272.Google Scholar
Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113 (3), 702734.Google Scholar
Chatfield, C., & Goodhardt, G. J. (1973). A consumer purchasing model with erlang inter-purchase times. Journal of the American Statistical Association, 68, 828835.Google Scholar
Christakis, N. A., & Fowler, J. H. (2007). The spread of obesity in a large social network over 32 years. The New England Journal of Medicine, 357 (4), 370379.Google Scholar
Cohen, R., Erez, K., ben-Avraham, D., & Havlin, S. (2001). Breakdown of the Internet under intentional attack. Physical Review Letters, 86, 3683685Google Scholar
Dezső, Z., & Barabási, A.-L. (2002). Halting viruses in scale-free networks. Physical Review E, 65 (5), 055103. doi:10.1103/PhysRevE.65.055103Google Scholar
Domingos, P., & Richardson, M. (2001). Mining the network value of customers. Paper presented at the International Conference on Knowledge Discovery and Data Mining, San Francisco, California. http://portal.acm.org/citation.cfm?id=502525#.CrossRefGoogle Scholar
Dover, Y., Goldenberg, J., & Shapira, D. (2012). Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data. Marketing Science, 31 (4), 689712.CrossRefGoogle Scholar
Eagle, N., Macy, M., & Claxton, R. (2010). Network diversity and economic development. Science, 328 (5981), 10291031.Google Scholar
Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social networks, 1, 215239.CrossRefGoogle Scholar
Galeotti, A., & Goyal, S. (2009). Influencing the influencers: A theory of strategic diffusion. The RAND Journal of Economics, 40 (3), 509532. doi:10.1111/j.1756-2171.2009.00075.xCrossRefGoogle Scholar
Gladwell, M. (2000). Tipping points: How little things can make a big difference. Boston, MA: Little, Brown and Company.Google Scholar
Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: Evidence from a field test. Marketing Science, 28 (4), 721739.Google Scholar
Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The role of hubs in the adoption process. Journal of Marketing, 73 (2), 113.CrossRefGoogle Scholar
Goldenberg, J., Libai, B., & Muller, E. (2001). Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 12 (3), 211223.CrossRefGoogle Scholar
Goyal, A, Bonchi, F, & Lakshmanan, L. V. S. (2010). Learning influence probabilities in social networks. Proceedings of the 3rd ACM International Conference on Web search and Data Mining (WSDM), February 4–6, New York, USA.Google Scholar
Iyengar, R., Van den Bulte, C., & Valente, T. W. (2011). Opinion leadership and social contagion in new product diffusion. Marketing Science, 30 (195).Google Scholar
Katz, E., & Lazarsfeld, P. (1955). Personal influence. New York: Free Press.Google Scholar
Kempe, D., Kleinberg, J. & Tardos, É. (2003). Maximizing the spread of influence through a social network. Paper presented at the Ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC.CrossRefGoogle Scholar
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6 (11), 888893. doi:10.1038/nphys1746Google Scholar
Krebs, V. E. (2002). Uncloaking terrorist networks. First Monday, 7 (4). Retrieved from http://www.firstmonday.dk/issues/issue7_4/krebs/index.html.Google Scholar
Lazarsfeld, P. F., Berelson, B., & Gaudet, H. (1948). The people's choice. New York: Columbia University Press.Google Scholar
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D.,. . . Alstyne, M. V. (2009). Computational social science. Science, 323 (5915), 721723. doi:10.1126/science.1167742CrossRefGoogle ScholarPubMed
Leider, S., Mobius, M. M., Rosenblat, T., & Do, Q.A. (2009). Directed altruism and enforced reciprocity in social networks. Quarterly Journal of Economics, 124 (4), 18151851.CrossRefGoogle Scholar
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1 (1).CrossRefGoogle Scholar
Libai, B., Biyalogorsky, E., & Gerstner, E. (2003). Setting referral fees in affiliate marketing. Journal of Service Research, 5 (4), 303315. doi:10.1177/1094670503005004003Google Scholar
Libai, B., Muller, E., & Peres, R. (2009). The Social Value of Word-of-Mouth Programs: Acceleration versus Acquisition. Working Paper No. 22/2009, Recanati Business School, Tel Aviv University.Google Scholar
Liben-Nowell, D., & Kleinberg, J. (2008). Tracing information flow on a global scale using internet chain-letter data. Proceedings of the National Academy of Sciences of the United States of America, 105 (12), 46334638.CrossRefGoogle ScholarPubMed
Marsden, P. (2006). Seed to spread: How seeding trials ignite epidemics of demand. In Kirby, J., & Marsden, P. (Eds.), Connected marketing: The viral, buzz, and word of mouth revolution (pp. 323). Oxford: Butterworth-Heinemann.Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444. doi:10.1146/annurev.soc.27.1.415CrossRefGoogle Scholar
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167256.Google Scholar
Noel, E., & Nyhan, B. (2011). The “unfriending” problem: The consequences of homophily in friendship retention for causal estimates of social influence. Social Networks, 33 (3), 211218.Google Scholar
Pastor-Satorras, R., & Vespignani, A. (2001). A. Epidemic spreading in scale-free networks. Physical Review Letters, 86, 3203203.Google Scholar
Reingen, P. H., & Kernan, J. B. (1986). Analysis of referral networks in marketing: Methods and illustration. Journal of Marketing Research, 23 (4), 370378.Google Scholar
Rosen, E. (2009). The anatomy of buzz revisited: Real-life lessons in word of mouth marketing. New York: Random House Digital, Inc.Google Scholar
Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 (4), 11181123. doi:10.1073/pnas.0706851105CrossRefGoogle ScholarPubMed
Schmitt, P., Skiera, B. & Van den Bulte, C. (2011). Referral programs and customer value. Journal of Marketing, 75 (1), 4659. doi:10.1509/jmkg.75.1.46CrossRefGoogle Scholar
Shalizi, C. R., & Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods Research, 42 (2), 211239.Google Scholar
Singh, J. (1990). Voice, exit, and negative word-of-mouth behaviors: An investigation across three service categories. Journal of the Academy of Marketing Science, 18 (1), 115. doi:10.1177/009207039001800101CrossRefGoogle Scholar
Sun, E., Rosenn, I., Marlow, C., & Lento, T. (2009). Gesundheit! modeling contagion through Facebook news feed. Paper presented at the Third International Conference on Weblogs and Social Media, San Jose, CA.Google Scholar
Sundararajan, A. (2008). Network seeding. Mimeo: New York University.Google Scholar
Taylor, S., Bakshy, E., & Aral, S. (2013). Selection Effects in Online Sharing: Consequences for Peer Adoption, 14th ACM Conference on Electronic Commerce (EC), June 16–20, University of Pennsylvania, Philadelphia, PA.Google Scholar
Uncles, M., Ehrenberg, A., & Hammond, K. (1995). Patterns of buyer behavior: Regularities, models, and extensions. Marketing Science, 14 (3), G7178. doi:10.1287/mksc.14.3.G71Google Scholar
Valente, T. W. (2012). Network interventions. Science, 337 (6090), 4953. doi:10.1126/science.1217330CrossRefGoogle ScholarPubMed
Valente, T. W., & Davis, R. L. (1999). Accelerating the diffusion of innovations using opinion leaders. The ANNALS of the American Academy of Political and Social Science, 556 (1), 5567. doi:10.1177/000271629956600105CrossRefGoogle Scholar
Van den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and imitators. Marketing Science, 26 (3), 400421. doi:10.1287/mksc.1060.0224Google Scholar
Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public opinion formation. Journal of Consumer Research, 34, 441458.Google Scholar
Whyte, W. H. (1954). The web of word of mouth. Fortune, 5, 140212.Google Scholar
Supplementary material: File

Aral Supplementary Material

Appendix

Download Aral Supplementary Material(File)
File 597.8 KB