Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:32:09.240Z Has data issue: false hasContentIssue false

Surface Modification to a-SiC Photocathode Using Ruthenium Nanoparticles

Published online by Cambridge University Press:  07 October 2013

Feng Zhu
Affiliation:
MVSystems, Inc, 500 Corporate Circle, Suite L, Golden, CO, 80401, USA.
Ilvydas Matulionis
Affiliation:
MVSystems, Inc, 500 Corporate Circle, Suite L, Golden, CO, 80401, USA.
Nicolas Gaillard
Affiliation:
Hawaii Natural Energy Institute (HNEI), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Yuancheng Chang
Affiliation:
Hawaii Natural Energy Institute (HNEI), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Jian Hu
Affiliation:
MVSystems, Inc, 500 Corporate Circle, Suite L, Golden, CO, 80401, USA.
Josh Gallon
Affiliation:
MVSystems, Inc, 500 Corporate Circle, Suite L, Golden, CO, 80401, USA.
Arun Madan
Affiliation:
MVSystems, Inc, 500 Corporate Circle, Suite L, Golden, CO, 80401, USA.
Get access

Abstract

In this paper we described using ruthenium (Ru) nanoparticles for surface modification on our hybrid PV/a-SiC photocathode for hydrogen production by water splitting under sunlight. Ru nanoparticles with size less than 5nm in diameter made the photocathode showed promising results: in an aqueous electrolyte an anodic shift of photocurrent onset potential around 450 mV and an increase in the photocurrent density up to 1.8mA/cm2 from a negligible value. Initial discussion the influence of Ru nanoparticles is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, F., Hu, J., Matulionis, I., Deutsch, T., Gaillard, N., Kunrath, A., Miller, E., and Madan, A., Philosophical Magazine, 89(28-30), 27232739 (2009)CrossRefGoogle Scholar
Hu, J., Zhu, F., Matulionis, I., Deutsch, T., Gaillard, N., Miller, E., and Madan, A., MRS Proceedings, 1171, S0305 (2009)CrossRefGoogle Scholar
Matulionis, I., Hu, J., Zhu, F., Gallon, J., Gaillard, N., Deutsch, T., Miller, E., and Madan, A., Proc. SPIE 7770, Solar Hydrogen and Nanotechnology V, 77700Z (2010).Google Scholar
Walter, Michael G., Warren, Emily L., McKone, James R., Boettcher, Shannon W., Mi, Qixi, Santori, Elizabeth A., and Lewis, Nathan S., Chemical Reviews, Vol. 110, No. 11, 64466473 (2010)CrossRefGoogle Scholar
Warren, Emily L.; Boettcher, Shannon W.; McKone, James R. ; Lewis, Nathan S., Proc. SPIE 7770, Solar Hydrogen and Nanotechnology, Vol, 77701F, 77701F-1-6, (2010)Google Scholar
Liao, Chi-Hung, Huang, Chao-Wei, and Wu, Jeffrey C. S., Catalysts 2012, 2, 490516 (2012).CrossRefGoogle Scholar
Yamada, Y., Miyahigashi, T., Kotani, H., Ohkubo, K., and Fukuzumi, S., J. Am. Chem. Soc., vol. 133, 1613616145 (2011)CrossRefGoogle Scholar
Dai, H., Kang, X., Wang, P., international journal of hydrogen energy, vol. 35, 1031710323, (2010)Google Scholar
Vayssieres, Lionel, ON SOLAR HYDROGEN & NANOTECHNOLOGY, John Wiley & Sons (Asia) Pte Ltd, 13, (2009)Google Scholar
Estes, M. J., Hirsch, L. R., Wichart, S., and Moddel, G., Williamso, D. L., J. Appl. Phys. 82(4), 15 (1997)CrossRefGoogle Scholar