Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T14:20:03.107Z Has data issue: false hasContentIssue false

Synthesis of Porous Inorganic Membranes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Here we will attempt a brief overview of recent synthetic efforts for micropore and lower-end mesopore membranes. We will not address the very important classes of nonporous membranes, such as dense metals and solid electrolytes with applications in H2 and O2 separations, or meso- and macroporous membranes, which find applications in food processing and water treatment. Microporous materials provide high permselectivities for molecules encountered in the chemical-processing industry but suffer from low intrinsic permeabilities. Therefore, in order to bring microporous membrane materials to commercial applications, functional composites with small effective thicknesses (in the micron or submicron range) must be developed. For example, to achieve economical membrane-reactor sizes, fluxes as high as 0.1 mol/(m2 s) are desirable. Approaches to microporous membranes include modification of mesoporous membranes by sol-gel and chemical-vapor-deposition (CVD) techniques, carbonization of polymers to form molecular-sieve carbon, and polycrystalline-film growth of zeolites and other molecular sieves.

Microporous carbon is widely used for liquid or gas purification because of its strong adsorptive properties and high surface area. It is also used for air separation by pressure swing adsorption (PSA), relying on its adsorptive and molecular-sieving properties. From the standpoint of applications, microporous carbons are classified into activated carbons with pore size 0.8–2 nm, and ultramicroporous carbons or carbon molecular sieves with pores 0.3–0.6 nm. Activated carbons are used because of their strong adsorption properties, while carbon molecular sieves are useful on account of their molecular-sieving as well as adsorption properties.

Type
Membranes and Membrane Processes
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boudart, M., CATECH 2 (1997) p. 94.Google Scholar
2.Emmerich, F.G., Carbon 33 (1995) p. 47.CrossRefGoogle Scholar
3.Kipling, J.J., Sherwood, J.N., Shooter, V., and Thompson, N.R., Carbon 1 (1964) p. 1099.Google Scholar
4.Kawamura, K. and Jenkins, G.M., J. Mater. Sci. 7 (1972) p. 315.CrossRefGoogle Scholar
5.Jablonski, G.A., Geurts, F.W., Sacco, A. Jr., and Biederman, R.R., Carbon 30 (1992) p. 87.CrossRefGoogle Scholar
6.Inagaki, M., Sakamoto, K., and Hishiyama, Y., J. Mater. Res. 6 (1991) p. 1108.CrossRefGoogle Scholar
7.Pinghua, W., Jie, L., Zhongren, Y., and Rengyuan, L., Carbon 30 (1992) p. 113.Google Scholar
8.Inagaki, M., Harada, S., Sato, T., Nakajima, T., Horino, Y., and Morita, K., Carbon 27 (1989) p. 253.CrossRefGoogle Scholar
9.Hatori, H., Yamada, Y., and Shiraishi, M., Carbon 30 (1992) p. 763.CrossRefGoogle Scholar
10.Koresh, J.E. and Softer, A., Sep. Sci. Technol. 22 (1987) p. 973.CrossRefGoogle Scholar
11.Jones, C.W. and Koros, W.J., Carbon 32 (1994) p. 1419.CrossRefGoogle Scholar
12.Kusuki, Y., Shimazaki, H., Tanihara, N., Nakanishi, S., and Yoshinaga, T., J. Membr. Sci. 134 (1997) p. 245.CrossRefGoogle Scholar
13.Hayashi, J., Yamamoto, M., Kusakabe, K., and Morooka, S., Ind. Eng. Chem. Res. 34 (1995) p. 4364.CrossRefGoogle Scholar
14.Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., and Morooka, S., J. Membr. Sci. 124 (1997) p. 243.CrossRefGoogle Scholar
15.Kita, H., Maeda, H., Tanaka, K., and Okamoto, K., Chem. Let. 36 (6) (1997) p. 179.CrossRefGoogle Scholar
16.Rao, M.B. and Sirkar, S., J. Membr. Sci. 85 (1993) p. 253.CrossRefGoogle Scholar
17.Acharya, M. and Foley, H.C., presented at AIChE Meeting, Miami, 1998.Google Scholar
18.Brinker, C.J. and Sherer, G.W., Sol-Gel Science (Academic Press, San Diego, 1990).Google Scholar
19.Brinker, C.J., Hurd, A.J., Schunk, R., Frye, G.C., and Ashley, C.S., J. Non-Cryst. Solids 147/148 (1992) p. 424.CrossRefGoogle Scholar
20.Guizard, C., “Sol-Gel Chemistry and its Application to Porous Membrane Processing,” in Fundamentals of Inorganic Membrane Science and Technology, edited by Burggraat, A.J. and Cot, L. (Elsevier, Amsterdam, 1996).Google Scholar
21.Burggraaf, A.J., “Fundamentals of Membrane Top-Layer Synthesis and Processing,” Fundamentals of Inorganic Membrane Science and Technology.Google Scholar
22.Lin, Y-S. and Burggraaf, A.J., J. Am. Ceram. Soc. 74 (1991) p. 219.CrossRefGoogle Scholar
23.Uhlhorn, R.J.R., Veld, M.H.B.J. Huis in't, Keizer, K., and Burggraaf, A.J., J. Mater. Sci. 27 (1992) p. 527.CrossRefGoogle Scholar
24.Klein, C. and Giszpenc, N., Ceram. Bull. 69 (1990) p. 1821.Google Scholar
25.de Lange, R.S.A., Hekkink, J.H.A., Keizer, K., and Burggraaf, A.J., J. Membr. Sci. 99 (1995) p. 57.CrossRefGoogle Scholar
26.de Lange, R.S.A., Hekkink, J.H.A., Keizer, K., and Burggraaf, A.J., Key Eng. Mater. 61/62 (1991) p. 72.Google Scholar
27.Kitao, S. and Asaeda, M., J. Chem. Eng. Jpn. 23 (1990) p. 367.CrossRefGoogle Scholar
28.Raman, N.K. and Brinker, C.J., J. Membr. Sci. 105 (1995) p. 273.CrossRefGoogle Scholar
29.Cairncross, A., Francis, L.F., and Scriven, L.E., AIChE J. 42 (1996) p. 55.CrossRefGoogle Scholar
30.Ng, V. and McCormick, A., J. Phys. Chem. 100 (3) (1996) p. 12517.CrossRefGoogle Scholar
31.de Vos, M. and Verweij, H., Science 279 (1998) p. 1710.CrossRefGoogle Scholar
32.Tsapatsis, M. and Gavalas, G.R., J. Membr. Sci. 87 (1994) p. 281.CrossRefGoogle Scholar
33.Kresge, C., Leonowicz, M., Roth, W., Vartuli, C., and Beck, J., Nature 359 (1992) p. 710.CrossRefGoogle Scholar
34.Firouzi, A., Kumar, D., Bull, L.M., Besier, T., Sieger, P., Huo, Q., Walker, S.A., Zasadzinski, J.A., Glinka, G., Nicol, J., Margolese, D., Stucky, G.D., and Chmelka, B.F., Science 267 (1995) p. 1138.CrossRefGoogle Scholar
35.Tolbert, S., Firouzi, A., Stucky, G.D., and Chmelka, B.F., Science 278 (1997) p. 264.CrossRefGoogle Scholar
36.Hillhouse, H.W., Okubo, T., van Egmond, J.W., and Tsapatsis, M., Chem. Mater. 9 (1997) p. 1505.CrossRefGoogle Scholar
37.Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., and Ozin, G.A., Nature 379 (1996) p. 703.CrossRefGoogle Scholar
38.Trau, M., Yao, N., Xia, Y., Whitesides, G.M., and Aksay, I.A., Nature 390 (1997) p. 674.CrossRefGoogle Scholar
39.Lu, Y.F., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W.L., Gup, Y.X., Soyez, H., Dunn, B., Huang, M.H., and Zink, J.I., Nature 389 (1997) p. 364.CrossRefGoogle Scholar
40.Raman, N.K., Anderson, M.T., and Brinker, C.J., Chem Mater. 8 (1996) p. 1682.CrossRefGoogle Scholar
41.Brinker, C.J. (private communication).Google Scholar
42.Davis, M.E., CATECH 1 (1997) p. 19.Google Scholar
43.Meier, W.M. and Olson, D.H., Atlas of Zeolite Structure Types (Butterworth-Heinemann, London, 1992).Google Scholar
44.Ozin, G.A., Kuperman, A., and Stein, A., Angew. Chem. Int. Ed. Engl. 28 (1989) p. 359.CrossRefGoogle Scholar
45.Davis, M.E., Ind. Eng. Chem. Res. 30 (1991) p. 1675.CrossRefGoogle Scholar
46.Barrer, R.M., Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).Google Scholar
47.Davis, M.E. and Lobo, R.F., Chem. Mater. 4 (1992) p. 56.Google Scholar
48.Lee, C-K. and Chiang, A.S.T., J. Chem Soc-Faraday Trans. 92 (1996) p. 3445.CrossRefGoogle Scholar
49.Hennepe, H.J.C., Boswerger, W.B.F., Bargeman, D., Mulder, M.H.V., and Smolders, C.A., J. Membr. Sci. 89 (1994) p. 185.CrossRefGoogle Scholar
50.Bein, T., Brown, K., and Brinker, C.J., “Molecular Sieve Films from Zeolite-Silica Microcomposites,” in Zeolites: Facts, Figures, Future, edited by Jacobs, P.A. and van Santen, R.A. (Elsevier Science Publishers, Amsterdam, 1989).Google Scholar
51.Myatt, G., Budd, P.M., Price, C., and Carr, S.W., J. Mater. Chem. 2 (10) (1992) p. 1103.CrossRefGoogle Scholar
52.Kita, H., Horii, K., Ohtoshi, Y., Tanaka, K., and Ichi, K., J. Mater. Sci. Lett. 14 (1995) p. 206.CrossRefGoogle Scholar
53.Kondo, M., Komori, M., Kita, H., and Okamoto, K., J. Membr. Sci. 133 (1997) p. 133.CrossRefGoogle Scholar
54.Giroir-Fendler, A., Pereux, J., Mozzanega, H., and Dalmon, J.A., Stud. Surf. Sci. Catal. 111 (1996) p. 127.CrossRefGoogle Scholar
55.Bai, C., Jia, M.D., Falconer, J.L., and Noble, R.D., J. Membr. Sci. 105 (1995) p. 79.CrossRefGoogle Scholar
56.Geus, E.R., van Bekkum, H., Bakker, W.J.W., and Moulijn, J.A., Microporous Mater. 1 (1993) p. 131.CrossRefGoogle Scholar
57.Bakker, W.J.W., Kapteijn, F., Poppe, J., and Moulijn, J.A., J. Membr. Sci. 117 (1996) p. 57.CrossRefGoogle Scholar
58.Noble, R.D. and Falconer, J.L., Catal. Today 25 (1995) p. 209.CrossRefGoogle Scholar
59.Sano, T., Kiyozumi, Y., Kawamura, M., Mizukami, F., Takaya, H., Mouri, T., Inaoka, W., Toida, Y., Watanabe, M., and Toyoda, K., Zeolites 11 (1991) p. 842.CrossRefGoogle Scholar
60.Yan, Y., Tsapatsis, M., Davis, M.E., and Gavalas, G.R., J. Chem. Soc. Chem. Commun. (1995) p. 227.Google Scholar
61.Jansen, J.C. and Rosmalen, G.M., J. Cryst. Growth 128 (1993) p. 1150.CrossRefGoogle Scholar
62.Kapteijn, F., Bakker, W.J.W., de Graaf, J. van, Zheng, G., Poppe, J., and Moulijn, J.A., Catal. Today 25 (1995) p. 213.CrossRefGoogle Scholar
63.Jia, M.D., Peinemann, K.V., and Behling, R.D., J. Membr. Sci. 82 (1993) p. 15.CrossRefGoogle Scholar
64.Geus, E.R., Denexter, M.J., and van Bekkum, H., J. Chem. Soc.-Faraday Trans. 88 (20) (1992) p. 3101.CrossRefGoogle Scholar
65.Kiyozumi, Y., Mizukami, F., Maeda, K., Kodzasa, T., Toba, M., and Niwa, S., Stud. Surf. Sci. Catal. 105 (1996) p. 2225.CrossRefGoogle Scholar
66.Yan, Y., Davis, M.E., and Gavalas, G.R., Ind. Eng. Chem. Res. 34 (1995) p. 1652.CrossRefGoogle Scholar
67.Funke, H.H., Kovalchick, M.G., Falconer, J.L., and Noble, R.D., Ind. Eng. Chem. Res. 35 (1996) p. 1575.CrossRefGoogle Scholar
68.Valtchev, V. and Mintova, S., Zeolites 15 (1995) p. 171.CrossRefGoogle Scholar
69.Kusakabe, K., Kuroda, T., Murata, A., and Morooka, S., Ind. Eng. Chem. Res. 36 (1997) p. 649.CrossRefGoogle Scholar
70.Wu, C.N., Chao, K.J., Tsai, T.G, Chiou, Y.H., and Shih, H.C., Adv. Mater. 8 (12) (1996) p. 1008.CrossRefGoogle Scholar
71.Fang, M., Du, H., Xu, W., Meng, X., and Pang, W., Microporous Mater. 9 (1997) p. 59.CrossRefGoogle Scholar
72.Koegler, J., Arafat, A., van Bekkum, H., and Jensen, J.C., Stud. Surf. Sci. Catal. 105 (1997) p. 2163.CrossRefGoogle Scholar
73.Mintova, S., Mo, S., and Bein, T., Chem. Mater. in press.Google Scholar
74.Mintova, S., Mo, S., Yasuda, K., Visser, J., and Bein, T., “Microwave Synthesis of Zeolite Films for Sensor Applications,” Proc. Int. Workshop on Zeolitic Membranes and Films, edited by Nakao, S. and Matsukata, M. (The Membrane Society of Japan, Gifu, Japan, June 28–30, 1998) p. 33.Google Scholar
75.Chao, K.J., Tsai, T.G., and Wu, C.N., “Membranes with Aligned Molecular Sieve Crystals,” Proc. Int. Workshop on Zeolitic Membranes and Films p. 58.Google Scholar
76.Nishiyama, N., Matsufuji, T., Ueyama, K., and Matsukata, M., Microporous Mater. 12 (1997) p. 293.CrossRefGoogle Scholar
77.Nishiyama, N., Ueyama, K., and Matsukata, M., J. Chem. Soc. Chem. Commun, (1995) p. 1967.CrossRefGoogle Scholar
78.Yan, Y., Davis, M.E., and Gavalas, G.R., J. Membr. Sci. 123 (1997) p. 95.CrossRefGoogle Scholar
79.Nomura, M., Yamaguchi, T., and Nakao, S., Ind. Eng. Chem. Res. 36 (1997) p. 4217.CrossRefGoogle Scholar
80.Lovallo, M.C. and Tsapatsis, M., “Nano-crystalline Zeolites: Synthesis, Characterization, and Application with Emphasison Zeolite L Nanoclusters,” in Advanced Techniques in Catalyst Synthesis, edited by Moser, W. (Academic Press, 1996).Google Scholar
81.Lovallo, M.C. and Tsapatsis, M., AIChE J. 42 (1996) p. 3020.CrossRefGoogle Scholar
82.Lai, W.F., Deckman, H.W., McHenry, J.A., and Verduijn, J.P., International Patent Application No. WO 96/01687 (1996).Google Scholar
83.Lovallo, M.C., Gouzinis, A., and Tsapatsis, M.AIChE J. 44 (8) (1998) p. 1903.CrossRefGoogle Scholar
84.Boudreau, L.C. and Tsapatsis, M., Chem. Mater. 9 (8) (1997) p. 1705.CrossRefGoogle Scholar
85. M.C Lovallo, Tsapatsis, M., and Okubo, T., Chem. Mater. 8 (1996) p. 1579.Google Scholar
86.Balkus, K.J. Jr., and Gimon-Kinsel, M.E., Chem. Mater. 10 (1998) p. 464.CrossRefGoogle Scholar
87.Xomeritakis, G., Gouzinis, A., Nair, S., Tsapatsis, M., He, M., Overney, R., and Okubo, T., Chem. Eng. Sci. in press, 1999.Google Scholar
88.Gouzinis, A. and Tsapatsis, M., Chem. Mater. 10 (9) (1998) p. 2497.CrossRefGoogle Scholar
89.Suzuki, H., U.S. Patent No. 4,699,892 (1987).Google Scholar
90.Kita, H., “Pervaporation Using Zeolite Membranes,” Proc. Int. Workshop on Zeolitic Membranes and Films, edited by Nakao, S. and Matsukata, M. (The Membrane Society of Japan, Gifu, Japan, June 28–30, 1998) p. 43.Google Scholar
91.Keizer, K., Burggraaf, A.J., Vroon, Z.A.E.P., and Verweij, H., J. Membr. Sci. 149 (1998) p. 159.CrossRefGoogle Scholar
92.Baertsch, C.D., Funke, H.H., Falconer, J.L., and Noble, R.D., J. Phys. Chem. 100 (1996) p. 7676.CrossRefGoogle Scholar
93.Xomeritakis, G. and Tsapatsis, M., Chem. Mater. in press.Google Scholar