Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T01:50:23.429Z Has data issue: false hasContentIssue false

Structure and composition of Au/Co magneto-plasmonic nanoparticles

Published online by Cambridge University Press:  28 August 2013

Nabraj Bhattarai
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Gilberto Casillas
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Subarna Khanal
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Daniel Bahena
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
J. Jesus Velazquez-Salazar
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Sergio Mejia
Affiliation:
Center for Innovation and Research in Engineering and Technology, and CICFIM-Facultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, NL 66450, Mexico
Arturo Ponce
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Vinayak P. Dravid
Affiliation:
Department of Material Science and Engineering, Northwestern University, 2220 Campus Drive Evanston, IL 60208, USA
Robert L. Whetten
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
Marcelo M. Mariscal
Affiliation:
INFIQC/CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, XUA5000 Córdoba, Argentina
Miguel Jose-Yacaman*
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
*
Address all correspondence to Miguel Jose-Yacaman atmiguel.yacaman@utsa.edu
Get access

Abstract

The fabrication of bimetallic magnetic nanoparticles (NPs) smaller than the size of single magnetic domain is very challenging because of the agglomeration, non-uniform size, and possible complex chemistry at nanoscale. In this paper, we present an alloyed ferromagnetic 4 ± 1 nm thiolated Au/Co magnetic NPs with decahedral and icosahedral shape. The NPs were characterized by Cs-corrected scanning transmission electron microscopy (STEM) and weretheoretically studied by Grand Canonical Monte Carlo simulations. Comparison of Z-contrast imaging and energy dispersive x-ray spectroscopy used jointly with STEM simulated images from theoretical models uniquely showed an inhomogeneous alloying with minor segregation. The magnetic measurements obtained from superconducting quantum interference device magnetometer exhibited ferromagnetic behavior. This magnetic nanoalloy in the range of single domain is fully magnetized and carries significance as a promising candidate for magnetic data recording, permanent magnetization, and biomedical applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lu, A.-H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., and Schüth, F.: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem., Int. Ed. 43, 4303 (2004).Google Scholar
2.Reiss, G. and Hutten, A.: Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4, 725 (2005).Google Scholar
3.Gleich, B. and Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214 (2005).CrossRefGoogle ScholarPubMed
4.Grass, R.N., Athanassiou, E.K., and Stark, W.J.: Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem., Int. Ed. 46, 4909 (2007).CrossRefGoogle ScholarPubMed
5.Elliott, D.W. and Zhang, W.X.: Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35, 4922 (2001).CrossRefGoogle ScholarPubMed
6.Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55 (2006).Google Scholar
7.Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., and Liz-Marzán, L.M.: Preparation and properties of silica-coated cobalt nanoparticles†. J. Phys. Chem. B 107, 7420 (2003).Google Scholar
8.Gao, J., Gu, H., and Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097 (2009).Google Scholar
9.Bao, Y. and Krishnan, K.M.: Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. J. Magn. Magn. Mater. 293, 15 (2005).CrossRefGoogle Scholar
10.Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 (2003).Google Scholar
11.Lu, Z., Prouty, M.D., Guo, Z., Golub, V.O., Kumar, C.S.S.R., and Lvov, Y.M.: Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21, 2042 (2005).Google Scholar
12.Lu, A.H., Salabas, E.e.L., and Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46, 1222 (2007).Google Scholar
13.Iwaki, T., Kakihara, Y., Toda, T., Abdullah, M., and Okuyama, K.: Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J. App. Phys. 94, 6807 (2003).Google Scholar
14.Chen, M., Kim, J., Liu, J.P., Fan, H., and Sun, S.: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132 (2006).Google Scholar
15.Sun, S., Murray, C., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
16.Weller, D. and Moser, A.: Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999).Google Scholar
17.Rapallo, A., Olmos-Asar, J., Oviedo, O., Ludueña, M., Ferrando, R., and Mariscal, M.: Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J. Phys. Chem. C 116, 17210 (2012).CrossRefGoogle Scholar
18.Oviedo, O., Leiva, E., and Mariscal, M.: Diffusion mechanisms taking place at the early stages of cobalt deposition on Au (111). J. Phys.: Condens. Matter. 20, 265010 (2008).Google Scholar
19.Mayoral, A., Mejia-Rosales, S., Mariscal, M.M., Perez-Tijerina, E., and Jose-Yacaman, M.: The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2, 2647 (2010).Google Scholar
20.Bao, F., Li, J.-F., Ren, B., Jian-Lin YaoGu, R.-A.and Tian, Z.-Q.: Synthesis and characterization of Au@ Co and Au@ Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy. J. Phys. Chem. C 112, 345 (2008).Google Scholar
21.Bao, Y., Calderon, H., and Krishnan, K.M.: Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J. Phys. Chem. C 111, 1941 (2007).Google Scholar
22.Wang, D. and Li, Y.: One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 132, 6280 (2010).Google Scholar
23.Auten, B.J., Hahn, B.P., Vijayaraghavan, G., Stevenson, K.J. and Chandler, B.D.: Preperation and Characterization of 3 nm Magnetic NiAu Nanoparticles. J. Phys. Chem. C 112, 5365 (2008).Google Scholar
24.Mariscal, M., Olmos-Asar, J., Gutierrez-Wing, C., Mayoral, A., and Yacaman, M.: On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 12, 11785 (2010).Google Scholar
25.Frenkel, A., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., and Rafailovich, M.: Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123, 184701 (2005).Google Scholar
26.Brust, M., Schiffrin, D.J., Bethell, D., and Kiely, C.J.: Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater. 7, 795 (1995).CrossRefGoogle Scholar
27.Bhattarai, N., Casillas, G., Khanal, S., Salazar, J.J.V., Ponce, A., and Jose-Yacaman, M.: Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. J. Nanopart. Res. 15, 1 (2013).Google Scholar
28.Bahena, D., Bhattarai, N., Santiago, U., Tlahuice, A., Ponce, A., Bach, S.B.H., Yoon, B., Whetten, R.L., Landman, U., and Jose-Yacaman, M.: STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4, 975 (2013).CrossRefGoogle Scholar
29.Pennycook, S.: Z-contrast STEM for materials science. Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
30.Mariscal, M.M., Velázquez-Salazar, J.J., and Yacaman, M.J.: Growth mechanism of nanoparticles: theoretical calculations and experimental results. CrystEngComm 14, 544 (2012).Google Scholar
31.Mariscal, M., Oviedo, O., and Leiva, E.: On the selection of facets in metallic nanoparticles. J. Mater. Res. 27, 1777 (2012).CrossRefGoogle Scholar
32.Cleri, F. and Rosato, V.: Tight-binding potentials for transition metals and alloys. Phy. Rev. B 48, 22 (1993).Google Scholar
33.Frankel, D. and Smith, B.: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 1996).Google Scholar
34.Lide, D.R.: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, FL, 1999).Google Scholar
35.Punkkinen, M.P., Hu, Q.-M., Kwon, S.K., Johansson, B., Kollár, J., and Vitos, L.: Surface properties of 3 d transition metals. Philos. Mag. 91, 3627 (2011).Google Scholar
36.Zólyomi, V., Vitos, L., Kwon, S., and Kollár, J.: Surface relaxation and stress for 5d transition metals. J. Phys.: Condens. Matter. 21, 095007 (2009).Google ScholarPubMed
37.Lorenz, W. and Staikov, G.: 2D and 3D thin film formation and growth mechanisms in metal electrocrystallization—an atomistic view by in situ STM. Surf. Sci. 335, 32 (1995).Google Scholar
38.Guo, H., Li, J. and Liu, B.: Atomistic modeling and thermodynamic interpretation of the bridging phenomenon observed in the Co-Au system. Phy. Rev. B 70, 195434 (2004).CrossRefGoogle Scholar
39.Bochicchio, D. and Ferrando, R.: Morphological instability of core-shell metallic nanoparticles. Phy. Rev. B 87, 165435 (2013).Google Scholar
40.Ishizuka, K.: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).CrossRefGoogle Scholar
41.Olmos-Asar, J.A., Rapallo, A., and Mariscal, M.M.: Development of a semiempirical potential for simulations of thiol–gold interfaces. Application to thiol-protected gold nanoparticles. Phys. Chem. Chem. Phys. 13, 6500 (2011).Google Scholar
42.Caruso, A., Wang, L., Jaswal, S., Tsymbal, E.Y., and Dowben, P.A.: The interface electronic structure of thiol terminated molecules on cobalt and gold surfaces. J. Mater. Sci. 41, 6198 (2006).Google Scholar
43.Kechrakos, D. and Trohidou, K.N.: Magnetic properties of dipolar interacting single-domain particles. Phy. Rev. B 58, 12169 (1998).CrossRefGoogle Scholar
44.Dormann, J.L., Fiorani, D., and Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 283 (2007).Google Scholar
Supplementary material: File

Bhattarai Supplementary Materials

Supplementary Materials

Download Bhattarai Supplementary Materials(File)
File 2.2 MB