Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T19:49:02.977Z Has data issue: false hasContentIssue false

Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies

Published online by Cambridge University Press:  16 August 2013

Andrew M. Ritzmann
Affiliation:
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544
Ana B. Muñoz-García
Affiliation:
Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
Michele Pavone
Affiliation:
Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
John A. Keith
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Emily A. Carter*
Affiliation:
Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and Environment, Princeton University, Princeton, New Jersey 08544
*
Address all correspondence to Emily A. Carter at eac@princeton.edu
Get access

Abstract

Solid oxide fuel cells (SOFCs) are attractive for clean and efficient electricity generation, but high operating temperatures (Top > 800 °C) limit their widespread usage. Oxygen ion conducting cathode materials (mixed ion-electron conductors, MIECs), such as La1−xSrxCo1−yFeyO3 (LSCF), enable lower Top by reducing cathode polarization losses. Understanding how composition affects oxygen diffusion in LaFeO3 is vitally important for designing high-performance LSCF cathodes. To do this, we employ first-principles density functional theory plus U (DFT+U) calculations to show how lanthanum vacancies in LaFeO3 dramatically change the oxygen diffusion coefficient. Our ab initio results show that A-site substoichiometry is a viable route to increased oxygen diffusion and higher SOFC performance.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563588 (1993).CrossRefGoogle Scholar
2Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 47914844 (2004).Google Scholar
3Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345352 (2001).Google Scholar
4Huang, K., Wan, J., and Goodenough, J.B.: Oxide-ion conducting ceramics for solid oxide fuel cells. J. Mater. Sci. 36, 10931098 (2001).CrossRefGoogle Scholar
5Rembelski, D., Viricelle, J.P., Combemale, L., and Rieu, M.: Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12, 256264 (2012).CrossRefGoogle Scholar
6Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., and Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 54435471 (2013).Google Scholar
7Lu, Z., Hardy, J., Templeton, J., and Stevenson, J.: Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J. Power Sources 198, 9094 (2012).CrossRefGoogle Scholar
8Striker, T., Ruud, J., Gao, Y., Heward, W., and Steinbruchel, C.: A-site deficiency, phase purity and crystal structure in lanthanum strontium ferrite powders. Solid State Ionics 178, 13261336 (2007).Google Scholar
9Lee, Y.-L., Kleis, J., Rossmeisl, J., and Morgan, D.: Ab initio energetics of LaBO3 (001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80, 224101 (2009).CrossRefGoogle Scholar
10Pavone, M., Ritzmann, A.M., and Carter, E.A.: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Env. Sci. 4, 49334937 (2011).CrossRefGoogle Scholar
11Jones, A. and Islam, M.S.: Atomic-scale insight into LaFeO3 Perovskite: defect nanoclusters and ion migration. J. Phys. Chem. C 112, 44554462 (2008).Google Scholar
12Ritzmann, A.M., Muñoz-García, A.B., Pavone, M., Keith, J.A., and Carter, E.A.: Ab initio DFT + U analysis of oxygen vacancy formation and migration in La1−xSrxFeO3−δ (x = 0, 0.25, 0.50). Chem. Mater., in press (2013) doi: 10.1021/cm401052w.Google Scholar
13Mastrikov, Y.A., Merkle, R., Kotomin, E.A., Kuklja, M.A., and Maier, J.: Formation and migration of oxygen vacancies in La1−xSrxCo1−yFeyO3−δ: insight from ab initio calculations and comparison with Ba1−xSrxCo1−yFeyO3−δ. Phys. Chem. Chem. Phys. 15, 911918 (2013).Google Scholar
14Mizusaki, J., Yoshihiro, M., Yamauchi, S., and Fueki, K.: Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−d. J. Solid State Chem. 58, 257266 (1985).CrossRefGoogle Scholar
15Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators – Hubbard-U instead of Stoner-I. Phys. Rev. B 44, 943954 (1991).Google Scholar
16Mosey, N.J., Liao, P., and Carter, E.A.: Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J. Chem. Phys 129, 014103 (2008).CrossRefGoogle ScholarPubMed
17Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
18Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).CrossRefGoogle ScholarPubMed
19Bader, R.F.W.: Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1994).Google Scholar
20Wolfram Research, Inc.; Mathematica Version 9.0 (Champaign, IL, 2013).Google Scholar
21Ishigaki, T., Yamauchi, S., Mizusaki, J., Fueki, K., Naito, H., and Adachi, T.: Diffusion of oxide ions in LaFeO3 single crystal. J. Solid State Chem. 55, 5053 (1984).CrossRefGoogle Scholar
22Marino, K.A. and Carter, E.A.: First-principles characterization of Ni diffusion kinetics in β-NiAl. Phys. Rev. B 78, 184105 (2008).Google Scholar
23Muñoz-García, A.B., Pavone, M., Ritzmann, A.M., and Carter, E.A.: Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling. Phys. Chem. Chem. Phys. 15, 62506259 (2013).Google Scholar
24Marezio, M. and Dernier, P.D.: The bond lengths in LaFeO3, MRS Bull. 6, 2329 (1971).Google Scholar
25Momma, K. and Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653658 (2008).Google Scholar
Supplementary material: File

Ritzmann Supplementary Material

Supplementary Material

Download Ritzmann Supplementary Material(File)
File 346.6 KB
Supplementary material: Image

Ritzmann Supplementary Material

Image

Download Ritzmann Supplementary Material(Image)
Image 39 KB
Supplementary material: Image

Ritzmann Supplementary Material

Image

Download Ritzmann Supplementary Material(Image)
Image 238.9 KB