Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T04:23:11.332Z Has data issue: false hasContentIssue false

Electron Diffraction of ThMn12/Th2Zn17-Type Structures in the Nd-Fe-Ti System

Published online by Cambridge University Press:  14 June 2013

Daniela Nunes*
Affiliation:
ICEMS, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
António P. Gonçalves
Affiliation:
IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa e CFMC-UL, Estrada Nacional 10, 2863-953 Sacavém, Portugal
Patricia A. Carvalho
Affiliation:
ICEMS, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
*
*Corresponding author. E-mail: daniela.nunes@ist.utl.pt
Get access

Abstract

Nd:11Fe:Ti alloys prepared by arc melting followed by splat quenching and annealing have been investigated by electron microscopy. The as-cast microstructure evidenced an α-Fe(Ti) → NdFe11Ti → Nd2(Fe,Ti)17 solidification sequence compatible with a cascade of peritectic reactions. The Nd2(Fe,Ti)17 phase was not detected in the microstructure of the splat-quenched materials, but after annealing the ternary compound grains consisted of a mixture of ThMn12-type and Th2Zn17-type structures exhibiting a consistent (020)1:12//(003)2:17 and [100]1:12//[110]2:17, orientation relation, with the invariant plane sitting at (022)1:12//(333)2:17. A series of 3D microdiffraction experiments carried out on grains presenting a random distribution of planar defects has been used to map the reciprocal space of the intergrown phases.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirabadizadeh, A., Tajabor, N., Alinejad, M.R., Salamati, H. & Pourarian, F. (2004). Magnetostrictive strain effects in NdFe11Ti. Phys Stat Sol (a) 201, 121124.Google Scholar
Chin, T.S., Chang, W.C., Ku, H.C., Weng, C.C., Lee, H.T. & Hung, M.P. (1989). Structure and magnetic properties of the ThMn12 type NdFeM alloys (M=Si/Al/B/transition metals). IEEE Trans Magn 25, 33003302.Google Scholar
Hu, B.P., Li, H.S., Gavigan, J.P. & Coey, J.M.D. (1989). Intrinsic magnetic properties of the iron-rich ThMn12-structure alloys R(Fe11Ti); R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. J Phys C: Condens Matter 1, 755770.Google Scholar
Jang, T.S. & Stadelmaier, H.H. (1990). Phase equilibria and magnetic properties of iron rich FeNdTi and FeSmTi alloys. J Appl Phys 67, 49574959.Google Scholar
Jian, M.R., Chin, T.S., Tsai, J.L., Zhang, H.W. & Shen, B.G. (2000). Structure and magnetic properties of textured Nd(Fe,Ti)12Nxfilms. J Magn Magn Mater 209, 205207.CrossRefGoogle Scholar
Kilaas, R. (1987). Interactive simulation of high resolution electron micrographs. In Proceedings of 45th Annual EMSA Meeting, Bailey, G.W. (Ed.), pp. 6667. San Francisco, CA: San Francisco Press.Google Scholar
Kong, L.S., Shen, B., Wang, F., Cao, L., Guo, H. & Ning, T. (1994). High-coercivity Sm-Fe-Ga-C compounds with Th2Zn17 structure by melt spinning. J Appl Phys 75, 62506252.Google Scholar
Li, H.S. & Coey, J.M.D. (1991). Magnetic properties of ternary rare-earth transition-metal compounds. In Handbook of Magnetic Materials, Buschow, K.H.J. (Ed.), vol. 6, pp. 184. Amsterdam: North-Holland.Google Scholar
Liao, L.X., Altounian, Z. & Ryan, D.H. (1993). Cobalt site preferences in iron rare-earth-based compounds. Phys Rev B 47, 1123011241.Google Scholar
Nunes, D., Colaço, R., de Hosson, J.T.M., Gonçalves, A.P., Pereira, L.C.J. & Carvalho, P.A. (2009a). Magnetic microstructure of YFe11Ti aggregates. J Alloys Compd 487, 1117.Google Scholar
Nunes, D., Gonçalves, A.P., Pereira, L.C.J., Colaço, R. & Carvalho, P.A. (2009b). Magnetic domain morphologies and wall energy in YFe11Ti crystals. Mater Charact 60, 16071612.CrossRefGoogle Scholar
Nunes, D., Gonçalves, A.P., Pereira, L.C.J., Colaço, R. & Carvalho, P.A. (2011). Microstructures and magnetic domain configurations of NdFe11Ti and Nd2(Fe,Ti)17 aggregates. Appl Phys A 104, 10531060.Google Scholar
Suski, W. (1996). The ThMn12-type compounds of rare earths and actinides: Structure, magnetic and related properties. In Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A. Jr. & Eyring, L. (Eds.), vol. 22, pp. 143294. Amsterdam: North-Holland.Google Scholar
Villars, D. & Calvert, L.D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., vol. 2. ASM International.Google Scholar
Yu, M.H., Zhang, Z.D., Xiao, Q.F., Geng, D.Y., Liu, W. & Zhao, X.G. (2000). Crystallographic transformations of rapidly quenched Nd10Fe90−x Ti x . J Appl Phys 88, 42264231.Google Scholar