Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T03:15:41.670Z Has data issue: false hasContentIssue false

A facile in situ morphological characterization of smart genipin-crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels

Published online by Cambridge University Press:  23 May 2013

Glenn A. Hurst*
Affiliation:
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
Katarina Novakovic
Affiliation:
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
*
a)Address all correspondence to this author. e-mail: g.hurst2@newcastle.ac.uk
Get access

Abstract

Stable, responsive and autofluorescent genipin-crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels have been synthesized. Morphological characterization techniques such as scanning electron microscopy, environmental scanning electron microscopy, and in situ confocal laser scanning microscopy (CLSM), in both reflectance and fluorescence modes, have been compared for their suitability to characterize the network structure of these hydrogels. CLSM is shown to be the optimal technique owing to the facile generation of the three-dimensional porous architecture and extra topographical information while the sample is immersed in the aqueous solution to which it will find application. CLSM is used in both reflectance and fluorescence modes to follow morphology variation as a function of time during swelling. Conveniently, acquisition via reflectance produces images with a higher degree of structural detail than fluorescence, widening the application of this method to characterize hydrogels where addition of a fluorescent probe, which may alter the native structure, is undesired.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tanaka, T., Fillmore, D., Sun, S.T., Nishio, I., Swislow, G., and Shah, A.: Phase transitions in ionic gels. Phys. Rev. Lett. 45(20), 1636 (1980).CrossRefGoogle Scholar
Ratner, B.D. and Hoffman, A.S.: Synthetic hydrogels for biomedical applications. ACS Symp. Ser. 31, 1 (1976).CrossRefGoogle Scholar
Peppas, N.A., Bures, P., Leobandung, W., and Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1), 27 (2000).CrossRefGoogle ScholarPubMed
Lee, K.Y. and Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869 (2001).CrossRefGoogle ScholarPubMed
Ulijn, R.V., Bibi, N., Jayawarna, V., Thornton, P.D., Todd, S.J., Mart, R.J., Smith, A.M., and Gough, J.E.: Bioresponsive hydrogels. Mater. Today 10(4), 40 (2007).CrossRefGoogle Scholar
Gupta, P., Vermani, K., and Garg, S.: Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discovery Today 7(10), 569 (2002).CrossRefGoogle ScholarPubMed
Zhang, H., Mardyani, S., Chan, W.C.W., and Kumacheva, E.: Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7(5), 1568 (2006).CrossRefGoogle ScholarPubMed
Lee, E.S., Kim, D., Youn, Y.S., Oh, K.T., and Bae, Y.H.: A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. 47(13), 2418 (2008).CrossRefGoogle ScholarPubMed
Patel, V.R. and Amiji, M.M.: Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm. Res. 13(4), 588 (1996).CrossRefGoogle ScholarPubMed
Tolaimate, A., Desbrières, J., Rhazi, M., Alagui, A., Vincendon, M., and Vottero, P.: On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41(7), 2463 (2000).CrossRefGoogle Scholar
Munjeri, O., Collett, J.H., and Fell, J.T.: Hydrogel beads based on amidated pectins for colon-specific drug delivery: The role of chitosan in modifying drug release. J. Controlled Release 46(3), 273 (1997).CrossRefGoogle Scholar
Muzzarelli, R.A.A.: Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 77(1), 1 (2009).CrossRefGoogle Scholar
Sogias, I.A., Williams, A.C., and Khutoryanskiy, V.V.: Why is chitosan mucoadhesive? Biomacromolecules 9(7), 1837 (2008).CrossRefGoogle ScholarPubMed
Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., and Tamura, H.: Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr. Polym. 82(2), 227 (2010).CrossRefGoogle Scholar
Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., and Steurbaut, W.: Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4(6), 1457 (2003).CrossRefGoogle ScholarPubMed
Kean, T. and Thanou, M.: Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Delivery Rev. 62(1), 3 (2010).CrossRefGoogle ScholarPubMed
Risbud, M.V., Hardikar, A.A., Bhat, S.V., and Bhonde, R.R.: pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Controlled Release 68(1), 23 (2000).CrossRefGoogle ScholarPubMed
Monteiro, O.A.C. and Airoldi, C.: Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26(2–3), 119 (1999).CrossRefGoogle Scholar
Singh, A., Narvi, S.S., Dutta, P.K., and Pandey, N.D.: External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull. Mater. Sci. 29(3), 233 (2006).CrossRefGoogle Scholar
Wan Ngah, W.S., Endud, C.S., and Mayanar, R.: Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50(2), 181 (2002).CrossRefGoogle Scholar
Liang, H.C., Chang, W.H., Liang, H.F., Lee, M.H., and Sung, H.W.: Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 91(6), 4017 (2004).CrossRefGoogle Scholar
Sung, H.W., Huang, R.N., Huang, L.L.H., and Tsai, C.C.: In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci., Polym. Ed. 10(1), 63 (1999).CrossRefGoogle ScholarPubMed
Mi, F.L., Tan, Y.C., Liang, H.C., Huang, R.N., and Sung, H.W.: In vitro evaluation of a chitosan membrane cross-linked with genipin. J. Biomater. Sci., Polym. Ed. 12(8), 835 (2001).CrossRefGoogle ScholarPubMed
Butler, M.F., Ng, Y.F., and Pudney, P.D.A.: Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci., Part A: Polym. Chem. 41(24), 3941 (2003).CrossRefGoogle Scholar
Hwang, Y.J., Larsen, J., Krasieva, T.B., and Lyubovitsky, J.G.: Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Appl. Mater. Interfaces 3(7), 2579 (2011).CrossRefGoogle ScholarPubMed
Chen, S.C., Wu, Y.C., Mi, F.L., Lin, Y.H., Yu, L.C., and Sung, H.W.: A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Controlled Release 96(2), 285 (2004).CrossRefGoogle Scholar
Higuchi, A., Shirano, K., Harashima, M., Yoon, B.O., Hara, M., Hattori, M., and Imamura, K.: Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23(13), 2659 (2002).CrossRefGoogle ScholarPubMed
Türker, L., Güner, A., Yigit, F., and Güven, O.: Spectrophotometric behavior of polyvinylpyrrolidone in aqueous and nonaqueous media (I). Colloid Polym. Sci. 268(4), 337 (1990).CrossRefGoogle Scholar
Zeng, M.F., Fang, Z.P., and Xu, C.W.: Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 230(1–2), 175 (2004).CrossRefGoogle Scholar
Khurma, J.R., Rohindra, D.R., and Nand, A.V.: Swelling and thermal characteristics of genipin crosslinked chitosan and poly(vinyl pyrrolidone) hydrogels. Polym. Bull. 54(3), 195 (2005).CrossRefGoogle Scholar
Liu, Y., Chen, W., and Kim, H.I.: PH-responsive release behavior of genipin-crosslinked chitosan/poly(ethylene glycol) hydrogels. J. Appl. Polym. Sci. 125(suppl. 2), E290 (2012).CrossRefGoogle Scholar
Khurma, J.R. and Nand, A.V.: Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym. Bull. 59(6), 805 (2008).CrossRefGoogle Scholar
José Moura, M., Margarida Figueiredo, M., and Helena Gil, M.: Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8, 3823 (2007).CrossRefGoogle Scholar
Holloway, J.L., Lowman, A.M., and Palmese, G.R.: The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9(3), 826 (2013).CrossRefGoogle Scholar
Nugent, M.J.D. and Higginbotham, C.L.: Investigation of the influence of freeze-thaw processing on the properties of polyvinyl alcohol/polyacrylic acid complexes. J. Mater. Sci. 41(8), 2393 (2006).CrossRefGoogle Scholar
Hassan, C.M. and Peppas, N.A.: Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7), 2472 (2000).CrossRefGoogle Scholar
Calvert, P.: Hydrogels for soft machines. Adv. Mater. 21(7), 743 (2009).CrossRefGoogle Scholar
McMullan, D.: Scanning electron microscopy 1928-1965. Scanning 17(3), 175 (1995).CrossRefGoogle Scholar
Kishi, R., Kihara, H., and Miura, T.: Structural observation of heterogeneous poly(N-isopropyl acrylamide-co-acrylic acid) hydrogels in highly hydrated states. Colloid Polym. Sci. 283(2), 133 (2004).CrossRefGoogle Scholar
Gattás-Asfura, K.M., Weisman, E., Andreopoulos, F.M., Micic, M., Muller, B., Sirpal, S., Pham, S.M., and Leblanc, R.M.: Nitrocinnamate-functionalized gelatin: Synthesis and "smart" hydrogel formation via photo-cross-linking. Biomacromolecules 6(3), 1503 (2005).CrossRefGoogle Scholar
Lu, G., Ling, K., Zhao, P., Xu, Z., Deng, C., Zheng, H., Huang, J., and Chen, J.: A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair and Regeneration 18(1), 70 (2010).CrossRefGoogle ScholarPubMed
Paddock, S.W.: Principles and practices of laser scanning confocal microscopy. Appl. Biochem. Biotechnol., Part B: Molecular Biotechnol. 16(2), 127 (2000).Google ScholarPubMed
Fergg, F., Keil, F.J., and Quader, H.: Investigations of the microscopic structure of poly(vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym. Sci. 279, 61 (2001).CrossRefGoogle Scholar
Harmon, M.E., Schrof, W., and Frank, C.W.: Fast-responsive semi-interpenetrating hydrogel networks images with confocal fluorescence microscopy. Polymer 44, 6927 (2003).CrossRefGoogle Scholar
Bodugoz-Senturk, H., Macias, C.E., Kung, J.H., and Muratoglu, O.K.: Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30, 589 (2009).CrossRefGoogle ScholarPubMed
Trieu, H.H. and Qutubuddin, S.: Polyvinyl alcohol hydrogels I. Microscopic structure by freeze-etching and critical point drying techniques. Colloid Polym. Sci. 272(3), 301 (1994).CrossRefGoogle Scholar
Lamprecht, A., Schäfer, U.F., and Lehr, C.M.: Characterization of microcapsules by confocal laser scanning microscopy: Structure, capsule wall composition and encapsulation rate. Eur. J. Pharm. Biopharm. 49(1), 1 (2000).CrossRefGoogle ScholarPubMed