Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T19:04:48.473Z Has data issue: false hasContentIssue false

Antarctica and supercontinental evolution: clues and puzzles

Published online by Cambridge University Press:  22 July 2013

Ian W. D. Dalziel*
Affiliation:
Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, J.J. Pickle Research Campus, Building 196 (ROC), 10100 Burnet Road (R2200), Austin, TX 78758-4445, USA

Abstract

Antarctica has been known as the “keypiece” of the Gondwana supercontinent since publication of Du Toit's 1937 classic book Our Wandering Continents. It is also important to reconstruction of the early Neoproterozoic supercontinent Rodinia. Laurentia, with its circumferential late Precambrian rifted margins, can be regarded as the ‘keypiece’ of Rodinia. The Southwest US–East Antarctica (SWEAT) hypothesis suggested former juxtaposition of the Pacific margins of Laurentia and East Antarctica. Several new lines of evidence support this hypothesis in a revised form, but must be reconciled with opening of the Pacific Ocean basin predating amalgamation, not only of Gondwana, but even of today's East Antarctic craton. The sequence of events is envisaged to have been: (1) formation prior to 1·6 Ga of a craton, including Laurentia and the Mawson craton, that extended from South Australia along the present Transantarctic margin to the Shackleton Range; (2) suturing of southernmost Laurentia to the Kalahari craton along the Grenville, Namaqua–Natal–Maud orogenic belt ca. 1·0 Ga; (3) rifting of the East Antarctic margin (Mawson craton) from western Laurentia ca. 0·7 Ga; (4) pan-African suturing of the Mawson craton to southernmost Laurentia as Gondwana amalgamated, forming the ephemeral Pannotia supercontinent; and (5) end-Precambrian separation of Laurentia as Iapetus opened.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Bell, R. T. and Jefferson, C. W. 1987. An hypothesis for an Australian–Canadian connection in the Late Proterozoic and the birth of the Pacific Ocean. Proceedings Pacific Rim Congress 1987, 3950. Parkville, Victoria: Australian Institute of Mining and Metallurgy.Google Scholar
Bennett, V. C. & DePaolo, D. J. 1987. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geological Society of America Bulletin 99, 674–85.Google Scholar
Boger, S. D. 2010. Antarctica – before and after Gondwana. Gondwana Research 19, 335–71.Google Scholar
Bond, G. C., Nickeson, P. A. & Kominz, M. A. 1984. Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories. Earth and Planetary Science Letters 70, 325–45.Google Scholar
Borg, S. G. & DePaolo, D. J. 1994. Laurentia, Australia, and Antarctica as a late Proterozoic supercontinent: constraints from isotopic mapping. Geology 22, 307–10.2.3.CO;2>CrossRefGoogle Scholar
Boyd, R., Nordgulen, Ø., Thomas, R. J., Bingen, B., Bjerkgård, T., Grenne, T., Henderson, I., Melezhik, V. A., Often, M., Sandstad, J. S., Solli, A., Tveten, E., Viola, G., Key, R. M., Smith, R. A., Gonzalez, E., Hollick, L. J., Jacobs, J., Jamal, D., Motuza, G., Bauer, W., Daudi, E., Feitio, P., Manhica, V., Moniz, A. & Rosse, D. 2010. The geology and geochemistry of the East African Orogen in northeastern Mozambique. South African Journal of Geology 113, 87129.CrossRefGoogle Scholar
Bullard, E., Everett, J. E. & Smith, A. G. 1965. The fit of the continents around the Atlantic. Philosophical Transactions of the Royal Society, London A 258, 4151.Google Scholar
Burrett, C. & Berry, R. 2000. Proterozoic Australia–Western United States (AUS–WUS) fit between Laurentia and Australia. Geology 28, 103–06.Google Scholar
Cawood, P. A., Strachan, R., Cutts, K., Kinny, P. D., Hand, M & Pisarevsky, S. 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38, 99102.Google Scholar
Corriveau, L. 2008. Iron oxide copper-gold: Wernecke breccias. Mineral Deposits of Canada, District Metallogeny 2008. http://gsc.nrcan.gc.ca/mindep/metallogeny/iocg/wernecke/index_e.phpGoogle Scholar
Craddock, C. 1982. Antarctica and Gondwanaland. In Craddock, C. (ed.) Antarctic Geoscience, 313. Madison: University of Wisconsin Press.Google Scholar
Dalla Salda, L., Dalziel, I. W. D., Cingolani, C. & Varela, R. 1992. Did the Taconic Appalachians continue into southern South America? Geology 20, 1059–62.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D. 1991. Pacific margins of Antarctica and East Antarctica–Australia as conjugate rift margins: evidence and implications. Geology 19, 598601.Google Scholar
Dalziel, I. W. D. 1993. Tectonic tracers and the origin of the proto-Andean margin. Proceedings XII Congreso Geologico Argentino III, 367–74.Google Scholar
Dalziel, I. W. D. 1997. Neo-Proterozoic–Paleozoic geography and tectonics: review, hypothesis, Environmental speculation. Geological Society of America Bulletin 108, 1642.Google Scholar
Dalziel, I. W. D. 2010. The North-West Highlands Memoir: A century-old legacy for understanding Earth before Pangaea. In Butler, R., Holdsworth, R., Krabbendam, M., Law, R. & Strahan, R. (eds) Continental Tectonics and Mountain Building. Geological Society, London, Special Publications 335, 187204.Google Scholar
Dalziel, I. W. D. & Lawver, L. A. 2000. The lithospheric setting of the West Antarctic Ice Sheet. In Alley, R. B. & Bindschadler, R. A. (eds) The West Antarctic Ice Sheet. Antarctic Research Series 77, 2944. Washington, DC: American Geophysical Union.Google Scholar
Du Toit, A. L. 1937. Our Wandering Continents. Edinburgh and London: Oliver and Boyd. 366 pp.Google Scholar
Evans, D. A. D. 2009. The palaeomagnetically viable, long-lived and all inclusive Rodinia supercontinent reconstruction. In Murphy, J. B., Keppie, J. D. & Hynes, A. J. (eds) Ancient Orogens and Modern Analogues. Geological Society, London, Special Publications 327, 371404.Google Scholar
Evans, D. A. D. & Mitchell, R. N. 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443–46.Google Scholar
Fanning, C. M., Moore, D. H., Bennett, V. C. & Daly, S. J. 1996. The ‘Mawson Continent’: Archaean to Proterozoic crust in the East Antarctic shield and Gawler craton, Australia; a cornerstone in Rodinia and Gondwanaland. In Kennard, J. M. (ed.) Geosciences for the Community. 13th Australian Geological Convention, Geological Society of Australia, Abstracts 41, 135.Google Scholar
Fisher, C. M., Loewy, S. L., Miller, C. F., Berquist, P., Van Schmus, W. R., Hatcher, R. D. Jr., Wooden, J. L. & Fullagar, P. D. 2010. Whole-rock Pb and Sm–Nd isotopic constraints on the growth of southeastern Laurentia during Grenville orogenesis. Geological Society of America Bulletin 122, 1646–59.Google Scholar
Frost, C. D. 1993. Nd isotopic evidence for the antiquity of the Wyoming province. Geology 21, 351–54.Google Scholar
Goodge, J. W., Fanning, C. M. & Bennett, V. C. 2001. U–Pb evidence of ∼1·7 Ga crustal tectonism during the Nimrod orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions. Precambrian Research 112, 261–88.Google Scholar
Goodge, J. W., Williams, I. S. & Myrow, P. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross Orogen, Antarctica: Detrital record of rift-, passive- and active-margin sedimentation. Geological Society of America Bulletin 116, 1253–79.Google Scholar
Goodge, J. W., Vervoort, J. D., Fanning, C. M., Brecke, D. M.Farmer, G. L., Williams, I. S., Myrow, P. M. & DePaolo, D. J. 2008. A positive test of East Antarctica–Laurentia juxtaposition within the Rodinia supercontinent. Science 321, 235–40.Google Scholar
Goodge, J. W. & Fanning, C. M. 1999. 2·5 b.y. of punctuated Earth history as recorded in a single rock. Geology 27, 1007–10.Google Scholar
Gose, W. A., Helper, M. A., Connelly, J. N., Hutson, F. E. & Dalziel, I. W. D. 1997. Paleomagnetic data and U–Pb isotopic ages from Coats Land, Antarctica: Implications for Neoproterozoic plate reconstructions. Journal of Geophysical Research 102, 7887–902.Google Scholar
Hamilton, M. A. & Buchan, K. L. 2010. U–Pb geochronology of the Western Channel Diabase, northwestern Laurentia: implications for a large 1·59 Ga magmatic province, Laurentia's APWP and paleocontinental reconstructions of Laurentia, Baltica and Gawler craton of southern Australia. Precambrian Research 183, 463–73.CrossRefGoogle Scholar
Hanson, R. E., Crowley, J. L., Bowring, S. A., Ramezani, J., Gose, W. A., Dalziel, I. W. D., Pancake, J. A., Seidel, E. K., Blenkinsop, T. G. & Mukwakwami, J. 2004. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodina assembly. Science 304, 1126–29.Google Scholar
Hoffman, P. F. 1988. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543603.CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 253, 1409–12.Google Scholar
Holmes, A. 1928. Radioactivity and Earth movements. Transactions of the Geological Society of Glasgow 18, 59–606.Google Scholar
Holmes, A. 1944. Principles of Physical Geology. London and Edinburgh: Nelson.Google Scholar
Jacobs, J., Pisarevsky, S. A., Thomas, R. J. & Becker, T. 2008. The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Research 160, 142–58.Google Scholar
Karlstrom, K. E., Harlan, S. S., Williams, M. L., McLelland, J., Geissman, J. W. & Ahall, K.-I. 1999. Refining Rodinia: Geologic evidence for the Australia–western U.S. connection in the Proterozoic. GSA Today 9, 17.Google Scholar
Kennedy, W. Q. 1964. The structural deformation of Africa in the Pan-African (±500 m.y.) tectonic episode. Leeds University Research Institute African Geology, Annual Report 8, 4849.Google Scholar
Key, R. M., Pitfield, P. E. J., Thomas, R. J., Goodenough, K. M., Waele, B. De, Schofield, D. I., Bauer, W., Horstwood, M. S. A., Styles, M. T., Conrad, J., Encarnacion, J., Lidke, D. J., O'connor, E. A.. Potter, C., Smith, R. A., Walsh, G. J., Ralison, A. V., Randriamananjara, T., Rafahatelo, J.-M. & Rabarimanana, M. 2011. Polyphase Neoproterozoic orogenesis within the East Africa–Antarctica Orogenic Belt in central and northern Madagascar. In Van Hinsbergen, D. J. J., Buiter, S. J. H., Torsvik, T. H., Gaina, C. & Webb, S. J. (eds) The Formation and Evolution of Africa: A Synopsis of 3·8 Ga of Earth History. Geological Society, London, Special Publications 357, 4967.Google Scholar
Kleinschmidt, G. & Boger, S. D. 2009. The Bertrab, Littlewood and Moltke Nunataksof Prinz-Regent-Luitpold-Land (Coats Land) – Enigma of East Antarctic Geology. Polarforschung 78, 95104.Google Scholar
Lawver, L. A., Gahagan, L. M. & Dalziel, I. W. D. 1998. A tight fit-early Mesozoic Gondwana, a plate reconstruction perspective. Memoirs of the National Institute of Polar Research 53, 214–29.Google Scholar
Li, Z. X., Zhang, L. & Powell, C. McA. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–10.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lul, S., Natapov, L. M., Pease, V., Pisarevsky, S., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.Google Scholar
Loewy, S. L., Dalziel, I. W. D., Pisarevsky, S., Connelly, J. N., Tait, J., Hanson, R. E. & Bullen, D. 2011. Coats Land crustal block, East Antarctica: a ‘tectonic tracer’ for Laurentia? Geology 39, 859–62.CrossRefGoogle Scholar
McMenamin, M. A. S. & McMenamin, D. L. S. 1990. The Emergence of Animals. New York: Columbia University Press. 217 pp.Google Scholar
Moores, E. M. 1991. Southwest US–East Antarctica (SWEAT) connection: a hypothesis. Geology 19, 425–28.Google Scholar
Payne, J. L., Hand, M., Barovich, K. M., Reid, A. & Evans, D. A. D. 2009. Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson continent. In Reddy, S. M., Mazumder, R., Evans, D. A. D. & Collins, A. S. (eds) Palaeopreoterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications 323, 319–55.Google Scholar
Peach, B. N., Horne, J., Gunn, W., Clough, C. T., Hinxman, L. W. & Teal, J. J. H. 1907. The geological structure of the North-West Highlands of Scotland. Memoir of the Geological Survey of Great Britain. London: J. Hedderwick & Sons Ltd. for HMSO. 668 pp.Google Scholar
Rämö, O. T. & Calzia, J. P. 1998. Nd isotopic composition of cratonic rocks in the southern Death Valley region: evidence for a substantial Archean source component in Mojavia. Geology 26, 891–94.Google Scholar
Ramos, V. A. 2004. Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Research 7, 1009–26.Google Scholar
Ramos, V. A. 2008. Patagonia: a Paleozoic continent adrift? Journal of South American Earth Sciences 26, 235–51.CrossRefGoogle Scholar
Ramos, V. A 2010. The Grenville basement in the Andes. Journal of South American Earth Sciences 29, 7791.Google Scholar
Romer, T., Mezger, G. & Scmädicke, E. 2009. Pan-African eclogite metamorphism of ultramafic rocks in the Shackleton Range, Antarctica. Journal of Metamorphic Geology 27, 335–47.Google Scholar
Ross, G. M., Parrish, R. R. & Winston, D. 1992. Provenance and U–Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): implications for age of deposition and pre-Panthalassa plate reconstructions. Earth and Planetary Science Letters 113, 5776.Google Scholar
Salter, J. W. 1859. Fossils of the Durness Limestone. Quarterly Journal of the Geological Society, London XV, 374–81.Google Scholar
Sears, J. W. & Price, R. A. 2003. Tightening the Siberian connection to western Laurentia. Geological Society of America Bulletin 115, 943–53.Google Scholar
Schmädicke, E. & Will, T. M. 2006. First evidence of eclogite facies metamorphism in the Shackleton Range, Antarctica: Trace of a suture between East and West Gondwana? Geology 34, 133–36.Google Scholar
Shackleton, R. M. 1976. Pan-African structures. Philosophical Transactions of the Royal Society, London A 280, 491–97.Google Scholar
Studinger, M. & Miller, H. 1999. Crustal structure of the Filchner–Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data; implications for the breakup of Gondwana. Journal of Geophysical Research 104, 20379–94.Google Scholar
Thomas, W. A. & Astini, R. A. 1996. The Argentine Precordillera: a traveler from the Ouachita embayment of North American Laurentia. Science 273, 752–57.Google Scholar
Thorkelson, D. J., Mortensen, J. K., Davidson, G. J., Creaser, R. A., Perez, W. A. & Abbott, J. G. 2001. Early Mesoproterozoic intrusive breccias in Yukon, Canada: the role of hydrothermal systemsin reconstructions of North America and Australia. Precambrian Research 111, 3155.Google Scholar
Tohver, E., Bettencourt, J. S., Tosdal, R., Mezger, K., Leite, W. B. & Payolla, B. L. 2004. Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters 228, 161–76.Google Scholar
Wegener, A. 1912. Die Entstehung der Kontinente. Geologische Rundschau 3, 276–92.Google Scholar
Will, T. M., Frimmel, H. E., Zeh, A., Le Roux, P. & Schmädicke, E. 2010. Geochemical and isotopic constraints on the tectonic and crustal evolution of the Shackleton Range, Antarctica, and correlation with other Gondwana crustal elements. Precambrian Research 180, 85112.Google Scholar
Will, T. M., Zeh, A., Gerdes, A., Frimmel, H. E., Millar, I. L. & Schmädicke, E. 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambrian Research 172, 2545.Google Scholar
Wilson, J. T. 1954. The development and structure of the crust. In Kuiper, G. P. (ed.) The Earth as a Planet, 138214. Chicago, Illinois: University of Chicago Press.Google Scholar
Wingate, M. T. D., Pisarevsky, S. A. & Evans, D. A. D. 2002. A revised Rodinia supercontinent: no SWEAT, no AUS–WUS. Terra Nova 14, 121–28.Google Scholar
Yang, Z., Sun, Z., Yang, T. & Pei, J. 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters 220, 423–34.Google Scholar
Zhao, J., Zhou, M., Yan, D., Zheng, J. & Li, J. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenville orogeny. Geology 39, 299302.Google Scholar