Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T12:28:44.040Z Has data issue: false hasContentIssue false

Structural evolution of massive early-type galaxies

Published online by Cambridge University Press:  17 July 2013

Ludwig Oser
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85741, Garching, Germany
Thorsten Naab
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85741, Garching, Germany
Jeremiah P. Ostriker
Affiliation:
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
Peter H. Johansson
Affiliation:
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki, Finlandoser@mpa-garching.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use a large sample of cosmological re-simulations of individual massive galaxies to investigate the origin of the strong increase in sizes and weak decrease of the stellar velocity dispersions since z = 2. At the end of a rapid early phase of star-formation, where stars are created from infalling cold gas, our simulated galaxies are all compact with projected half-mass radii of ≲ 1 kpc and central line-of-sight velocity dispersions of ≈ 262 km s−1. At lower redshifts (z < 2) those galaxies grow predominantly by the accretion of smaller stellar systems and evolve towards the observed local mass-size and mass-velocity dispersion relations. This loss of compactness is accompanied with an increase of central dark matter fractions. We find that the structural evolution of massive galaxies can be explained by frequent minor stellar mergers, which is the dominant mode of accretion for our simulated galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Barnabè, M., Czoske, O., Koopmans, L. V. E., Treu, T., & Bolton, A. S. 2011, MNRAS, 415, 2215Google Scholar
Bezanson, R., van Dokkum, P. G., Tal, T., Marchesini, D., Kriek, M., Franx, M., & Coppi, P. 2009, ApJ, 697, 1290CrossRefGoogle Scholar
Buitrago, F., Trujillo, I., Conselice, C. J., Bouwens, R. J., Dickinson, M., & Yan, H. 2008, ApJL, 687, L61CrossRefGoogle Scholar
Carrasco, E. R., Conselice, C. J., & Trujillo, I. 2010, MNRAS, 405, 2253Google Scholar
Hilz, M., Naab, T., & Ostriker, J. P. 2013, MNRAS, 429, 2924CrossRefGoogle Scholar
Hilz, M., Naab, T., Ostriker, J. P., Thomas, J., Burkert, A., & Jesseit, R. 2012, MNRAS, 425, 3119Google Scholar
Johansson, P. H., Naab, T., & Ostriker, J. P. 2009, ApJL, 697, L38CrossRefGoogle Scholar
Johansson, P. H., Naab, T., & Ostriker, J. P. 2012, ApJ, 754, 115Google Scholar
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJL, 699, L178Google Scholar
Oser, L., Naab, T., Ostriker, J. P., & Johansson, P. H. 2012, ApJ, 744, 63CrossRefGoogle Scholar
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, ApJ, 725, 2312Google Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Szomoru, D., Franx, M., & van Dokkum, P. G. 2012, ApJ, 749, 121Google Scholar
van de Sande, J., et al. 2011, ApJL, 736, L9CrossRefGoogle Scholar
van Dokkum, P. G., et al. 2010, ApJ, 709, 1018Google Scholar