Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:35:30.068Z Has data issue: false hasContentIssue false

How much more can sunspots tell us about the solar dynamo?

Published online by Cambridge University Press:  18 July 2013

Aimee A. Norton
Affiliation:
HEPL, Solar Physics, Stanford University, CA 94305USA, email: aanorton@stanford.edu
Eric H. Jones
Affiliation:
Centre for Astronomy, University of Southern Queensland, Toowoomba, QLD, Australia email: eric.jones@jcu.edu.au
Y. Liu
Affiliation:
HEPL, Solar Physics, Stanford University, CA 94305USA, email: aanorton@stanford.edu
K. Hayashi
Affiliation:
HEPL, Solar Physics, Stanford University, CA 94305USA, email: aanorton@stanford.edu
J. T. Hoeksema
Affiliation:
HEPL, Solar Physics, Stanford University, CA 94305USA, email: aanorton@stanford.edu
Jesper Schou
Affiliation:
HEPL, Solar Physics, Stanford University, CA 94305USA, email: aanorton@stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sunspot observations inspired solar dynamo theory and continue to do so. Simply counting them established the sunspot cycle and its period. Latitudinal distributions introduced the tough constraint that the source of sunspots moves equator-ward as the cycle progresses. Observations of Hale's polarity law mandated hemispheric asymmetry. How much more can sunspots tell us about the solar dynamo? We draw attention to a few outstanding questions raised by inherent sunspot properties. Namely, how to explain sunspot rotation rates, the incoherence of follower spots, the longitudinal spacing of sunspot groups, and brightness trends within a given sunspot cycle. After reviewing the first several topics, we then present new results on the brightness of sunspots in Cycle 24 as observed with the Helioseismic Magnetic Imager (HMI). We compare these results to the sunspot brightness observed in Cycle 23 with the Michelson Doppler Imager (MDI). Next, we compare the minimum intensities of five sunspots simultaneously observed by the Hinode Solar Optical Telescope Spectropolarimeter (SOT-SP) and HMI to verify that the minimum brightness of sunspot umbrae correlates well to the maximum field strength. We then examine 90 and 52 sunspots in the north and south hemisphere, respectively, from 2010 - 2012. Finally, we conclude that the average maximum field strengths of umbra 40 Carrington Rotations into Cycle 24 are 2690 Gauss, virtually indistinguishable from the 2660 Gauss value observed at a similar time in Cycle 23 with MDI.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Babcock, H. W. 1993, ApJ, 133, 572 Google Scholar
Beck, J., Duvall, T. L. Jr., & Scherrer, P. H., 1998, Nature, 394, 653 CrossRefGoogle Scholar
Beeck, B., Collet, R., Steffen, M., et al., 2012, A&A, 539, A121 Google Scholar
Benevolenskaya, E. E., Hoeksema, J. T., Kosovichev, A. G., & Scherrer, P. H. 1999, ApJ, 517, L163 Google Scholar
Borrero, J. M., Tomczyk, S., & Norton, A. A., et al., 2007, Sol. Phys., 240, 177 Google Scholar
Borrero, J. M., Tomczyk, S., & Kubo, M., et al. 2011, Sol. Phys., 273, 267 Google Scholar
Brandenburg, A. 2005, ApJ, 625, 539 Google Scholar
Bray, R. J., & Loughhead, R. E., 1964, Sunspots, Pitman Press, Bath Google Scholar
Caligari, P., Moreno-Insertis, F., & Schüssler, M., 1995, ApJ, 441, 886 Google Scholar
Caligari, P., Schüssler, M., & Moreno-Insertis, F., 1998, ApJ, 502, 481 Google Scholar
Fan, Y., Fisher, G. H., & Deluca, E. E., 1993, ApJ, 405, 390 Google Scholar
Fan, Y., 2009, Liv. Rev. SolPhys, 6, 4 Google Scholar
Ichimoto, K., et al., 2008, Sol Phys., 249, 233 Google Scholar
Kosovichev, A. G., et al., 1997, Sol. Phys., 170, 43 Google Scholar
Leighton, R. B. 1964, ApJ, 140, 1547 Google Scholar
Lites, B. W., et al., 2007, ASP Conference Series, 369, 55 Google Scholar
Maltby, P., et al., 1986, ApJ, 306, 284 Google Scholar
Mathew, S. K., et al., 2007, A&A, 465, 291 Google Scholar
Norton, A. A. & Gilman, P. A., 2004, ApJ, 603, 348 Google Scholar
Norton, A. A., Pietarila Graham, J. D., & Ulrich, , et al., 2006, Sol. Phys., 239, 69 Google Scholar
Petrovay, K., 2000, in: Zirin, Ai, Wang (eds), ASP Conference Series, The Magnetic and Velocity Fields of Solar Active Regions, 46, 123 Google Scholar
Petrovay, K., 2000, in: Wilson, A. (eds), ESA Publications Division and Noordwijk, Netherlands, Proc. of the 1st Solar and Space Weather Euroconference, 463, 3 Google Scholar
Penn, M., & Livingston, W., 2006, ApJ, 649, L45 Google Scholar
Rezaei, R., Beck, C., & Schmidt, W., 2012, A&A 541 A60. Google Scholar
Scherrer, P. H., et al., 2012, Sol Phys., 275, 207 Google Scholar
Schou, J., Antia, H. M., & Basu, S., et al. 1998, ApJ, 505, 390 Google Scholar
Stein, R. F. & Nordlund, Å., 2012, ApJ, 753, L13 Google Scholar
Watson, F. T., Fletcher, L., & Marshall, S., 2011, A&A, 533, A14 Google Scholar
Wilson, P. R., Burtonclay, D., Li, Y., 1997, ApJ, 489, 395 Google Scholar