Journal of Fluid Mechanics

Papers

Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory

Jan Moláčeka1 and John W. M. Busha1 c1

a1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

We present the results of a combined experimental and theoretical investigation of droplets walking on a vertically vibrating fluid bath. Several walking states are reported, including pure resonant walkers that bounce with precisely half the driving frequency, limping states, wherein a short contact occurs between two longer ones, and irregular chaotic walking. It is possible for several states to arise for the same parameter combination, including high- and low-energy resonant walking states. The extent of the walking regime is shown to be crucially dependent on the stability of the bouncing states. In order to estimate the resistive forces acting on the drop during impact, we measure the tangential coefficient of restitution of drops impacting a quiescent bath. We then analyse the spatio-temporal evolution of the standing waves created by the drop impact and obtain approximations to their form in the small-drop and long-time limits. By combining theoretical descriptions of the horizontal and vertical drop dynamics and the associated wave field, we develop a theoretical model for the walking drops that allows us to rationalize the limited extent of the walking regimes. The critical requirement for walking is that the drop achieves resonance with its guiding wave field. We also rationalize the observed dependence of the walking speed on system parameters: while the walking speed is generally an increasing function of the driving acceleration, exceptions arise due to possible switching between different vertical bouncing modes. Special focus is given to elucidating the critical role of impact phase on the walking dynamics. The model predictions are shown to compare favourably with previous and new experimental data. Our results form the basis of the first rational hydrodynamic pilot-wave theory.

(Received December 07 2012)

(Revised April 01 2013)

(Accepted May 24 2013)

(Online publication June 28 2013)

    Key words

    • drops;
    • Faraday waves;
    • waves/free-surface flows

    Correspondence

    c1 Email address for correspondence: bush@math.mit.edu

    Metrics