Journal of Materials Research

Reviews

Characterizing interface dislocations by atomically informed Frank-Bilby theory

Jian Wanga1 c1, Ruifeng Zhanga2, Caizhi Zhoua2, Irene J. Beyerleina2 and Amit Misraa3

a1 Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

a2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

a3 Materials Physics & Applications, The Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

Semicoherent interfaces containing discrete dislocations are more energetically favorable than those containing continuous distributions because of lower chemical energy. The classical Frank-Bilby theory provided a way to determine the interface Burgers vectors content but could not effectively predict the characteristics of discrete dislocations. Atomistic simulations provide insights into analyzing the characteristics of discrete dislocations but the analysis is often disturbed by the reaction of interface dislocations. By combining the classical Frank-Bilby theory and atomistic simulations, an atomically informed Frank-Bilby theory proposed in this work can overcome shortcomings in both the classic Frank-Bilby theory and atomistic simulations, and enable quantitative analysis of interface dislocations. The proposed method has been demonstrated via studying two typical dissimilar metallic interfaces. The results showed that Burgers vectors of interface dislocations can be well defined in a Commensurate/Coherent Dichromatic Pattern (CDP) and the Rotation CDP (RCDP) lattices. Most importantly, the CDP and RCDP lattices are not simply a geometric average of the two natural lattices, that is the lattice misfit and the relative twist take the nonequal partition of the misfit strain and the twist angle.

(Received November 07 2012)

(Accepted February 01 2013)

Keywords

  • interface;
  • dislocation;
  • Frank-Bilby;
  • atomistic simulation

Correspondence

c1 Address all correspondence to this author. e-mail: wangj6@lanl.gov

Footnotes

  This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

0Comments