Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T13:20:27.314Z Has data issue: false hasContentIssue false

Pathogenesis of listeriosis during pregnancy

Published online by Cambridge University Press:  25 January 2013

Keith P. Poulsen*
Affiliation:
Department of Clinical Sciences, Oregon State University, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
Charles J. Czuprynski
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
*
*Corresponding author. E-mail: keith.poulsen@oregonstate.edu

Abstract

Listeria monocytogenes causes several clinical manifestations in humans and domestic animals. This bacterium is a saprophyte in soil and ensiled feeds, which are sources of infection for food producing animals (i.e. ruminants). The most common route of infection for people is via ingestion of contaminated ready-to-eat food products such as produce, soft cheeses and deli meats. In the United States, L. monocytogenes causes relatively few cases of clinical disease compared to other food-borne pathogens. However, clinical listeriosis is associated with high mortality, especially in immunocompromised patients, pregnant women, neonates, and the elderly. Listeria is an intracellular pathogen, which has been widely used in basic research to elucidate mechanisms of molecular pathogenesis and protective cell-mediated immunity. Despite the sizeable knowledge on L. monocytogenes pathogenesis, key points regarding listeriosis during pregnancy and the perinatal period remain unknown. This review summarizes listeriosis in humans and domestic animals during pregnancy, and animal models used to study the pathogenesis and immune response to L. monocytogenes infection during these periods.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, S and Gurney, AL (2002). IL-17: prototype member of an emerging cytokine family. Journal of Leukocyte Biology 71: 18.CrossRefGoogle ScholarPubMed
Albritton, WL, Cochi, SL and Feeley, JC (1984). Overview of neonatal listeriosis. Clinical and Investigative Medicine 7: 311314.Google ScholarPubMed
Andoh, A, Zhang, Z, Inatomi, O, Fujino, S, Deguchi, Y, Araki, Y, Tsujikawa, T, Kitoh, K, Kim-Mitsuyama, S, Takayanagi, A, Shimizu, N and Fujiyama, Y (2005). Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129: 969984.CrossRefGoogle ScholarPubMed
Avery, SM and Buncic, S (1997). Differences in pathogenicity for chick embryos and growth kinetics at 37 degrees C between clinical and meat isolates of Listeria monocytogenes previously stored at 4 degrees C. International Journal of Food Microbiology 34: 319327.CrossRefGoogle ScholarPubMed
Bakardjiev, AI, Stacy, BA, Fisher, SJ and Portnoy, DA (2004). Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infection and Immunity 72: 489497.CrossRefGoogle Scholar
Beckerle, MC (1998). Spatial control of actin filament assembly: lessons from Listeria. Cell 95: 741748.CrossRefGoogle ScholarPubMed
Becroft, DM, Farmer, K, Seddon, RJ, Sowden, R, Stewart, JH, Vines, A and Wattie, DA (1971). Epidemic listeriosis in the newborn. British Medical Journal 3: 747751.CrossRefGoogle ScholarPubMed
Ben Embarek, PK (1994). Presence, detection and growth of Listeria monocytogenes in seafoods: a review. International Journal of Food Microbiology 23: 1734.CrossRefGoogle ScholarPubMed
Berg, RE, Crossley, E, Murray, S and Forman, J (2003). Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. Journal of Experimental Medicine 198: 15831593.CrossRefGoogle ScholarPubMed
Boniface, K, Bernard, FX, Garcia, M, Gurney, AL, Lecron, JC and Morel, F (2005). IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. Journal of Immunology 174: 36953702.CrossRefGoogle ScholarPubMed
Carter, AM (2007). Animal models of human placentation–a review. Placenta 28 (Suppl. A): S41S47.Google Scholar
Caldecott, J and Miles, L, eds ( 2005). World Atlas of Great Apes and their Conservation. Berkeley, CA: University of California Press.Google Scholar
Chalifoux, LV and Hajema, EM (1981). Septicemia and meningioencephalitis caused by Listeria monocytogenes in a neonatal Macaca fascicularis. Journal of Medical Primatology 10: 336339.CrossRefGoogle Scholar
Chaouat, G, Zourbas, S, Ostojic, S, Lappree-Delage, G, Dubanchet, S, Ledee, N and Martal, J (2002). A brief review of recent data on some cytokine expressions at the materno–foetal interface which might challenge the classical Th1/Th2 dichotomy. Journal of Reproductive Immunology 53: 241256.CrossRefGoogle ScholarPubMed
Chaturongakul, S, Raengpradub, S, Wiedmann, M and Boor, KJ (2008). Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology 16: 388396.CrossRefGoogle ScholarPubMed
Cheers, C and McKenzie, IF (1978). Resistance and susceptibility of mice to bacterial infection: genetics of listeriosis. Infection and Immunity 19: 755762.CrossRefGoogle ScholarPubMed
Cheng, Y, Siletzky, RM and Kathariou, S (2008). Genomic divisions/lineages, epidemic clones, and population structure. In: Liu, D (ed) Handbook of Listeria Monocytogenes, 1st edn. Boca Raton, FL: CRC Press, pp. 337358.CrossRefGoogle Scholar
Cheng, Y, Kim, JW, Lee, S, Siletzky, RM and Kathariou, S (2010). DNA probes for unambiguous identification of Listeria monocytogenes epidemic clone II strains. Applied and Environmental Microbiology 76: 30613068.CrossRefGoogle ScholarPubMed
Cooper, GL (1989). An encephalitic form of listeriosis in broiler chickens. Avian Diseases 33: 182185.CrossRefGoogle ScholarPubMed
Cossart, P, Pizarro-Cerda, J and Lecuit, M (2003). Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends in Cellular Biology 13: 2331.Google Scholar
Cotter, PD and Hill, C (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67: 429453.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Canono, BP, Henson, PM and Campbell, PA (1985). Genetically determined resistance to listeriosis is associated with increased accumulation of inflammatory neutrophils and macrophages which have enhanced listericidal activity. Immunology 55: 511518.Google ScholarPubMed
Czuprynski, CJ, Faith, NG and Steinberg, H (2003). A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infection and Immunity 71: 682689.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Henson, PM and Campbell, PA (1984). Killing of Listeria monocytogenes by inflammatory neutrophils and mononuclear phagocytes from immune and nonimmune mice. Journal of Leukocyte Biology 35: 193208.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Kathariou, S and Poulsen, KP (2010). Listeria. In: Gyles, CL, Prescott, JF, Songer, JG and Thoen, CO (eds) Pathogenesis of Bacterial Infections in Animals, 4th edn. Ames, IA: Blackwell, pp. 167187.CrossRefGoogle Scholar
Czuprynski, CJ, Noel, EJ, Doyle, MP and Schultz, RD (1989). Ingestion and killing of Listeria monocytogenes by blood and milk phagocytes from mastitic and normal cattle. Journal of Clinical Microbiology 27: 812817.Google Scholar
Darji, A, Bruder, D, zur Lage, S, Gerstel, B, Chakraborty, T, Wehland, J and Weiss, S (1998). The role of the bacterial membrane protein ActA in immunity and protection against Listeria monocytogenes. Journal of Immunology 161: 24142420.CrossRefGoogle ScholarPubMed
Decatur, AL and Portnoy, DA (2000). A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290: 992995.CrossRefGoogle ScholarPubMed
Denk, H, Flamm, H and Kovac, W (1966). Histological investigation of pregnant mice following infection with Listeria monocytogenes. Pathologia et Microbiologia (Basel) 29: 163175.Google ScholarPubMed
Disson, O, Grayo, S, Huillet, E, Nikitas, G, Langa-Vives, F, Dussurget, O, Ragon, M, Le Monnier, A, Babinet, C, Cossart, P and Lecuit, M (2008). Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455: 11141118.CrossRefGoogle ScholarPubMed
Fernandez, PS, George, SM, Sills, CC and Peck, MW (1997). Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. International Journal of Food Microbiology 37: 3745.CrossRefGoogle ScholarPubMed
Ferreira, A, Sue, D, O'Byrne, CP and Boor, KJ (2003). Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Applied and Environmental Microbiology 69: 26922698.CrossRefGoogle ScholarPubMed
Gargano, JW, Holzman, C, Senagore, P, Thorsen, P, Skogstrand, K, Hougaard, DM, Rahbar, MH and Chung, H (2008). Mid-pregnancy circulating cytokine levels, histologic chorioamnionitis and spontaneous preterm birth. Journal of Reproductive Immunology 79: 100110.Google Scholar
George, LW (2009). Listeriosis. In: Smith, BP (ed) Large Animal Internal Medicine, 4th edn. St. Louis, MO: Mosby Elsevier, pp. 10451048.Google Scholar
Gervais, F, Stevenson, M and Skamene, E (1984). Genetic control of resistance to Listeria monocytogenes: regulation of leukocyte inflammatory responses by the Hc locus. Journal of Immunology 132: 20782083.CrossRefGoogle ScholarPubMed
Glomski, IJ, Gedde, MM, Tsang, AW, Swanson, JA and Portnoy, DA (2002). The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. Journal of Cell Biology 156: 10291038.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Culhane, JF, Iams, JD and Romero, R (2008). Epidemiology and causes of preterm birth. Lancet 371: 7584.CrossRefGoogle ScholarPubMed
Goulet, V and Marchetti, P (1996). Listeriosis in 225 non-pregnant patients in 1992: clinical aspects and outcome in relation to predisposing conditions. Scandinavian Journal of Infectious Diseases 28: 367374.CrossRefGoogle ScholarPubMed
Graham, AC, Carr, KD, Sieve, AN, Indramohan, M, Break, TJ and Berg, RE (2011). IL-22 production is regulated by IL-23 during Listeria monocytogenes infection but is not required for bacterial clearance or tissue protection. PLoS ONE 6:e17171.Google Scholar
Graves, LM, Hunter, SB, Ong, AR, Schoonmaker-Bopp, D, Hise, K, Kornstein, L, DeWitt, WE, Hayes, PS, Dunne, E, Mead, P and Swaminathan, B (2005). Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet network. Journal of Clinical Microbiology 43: 23502355.Google Scholar
Gray, ML and Killinger, AH (1966). Listeria monocytogenes and listeric infections. Bacteriological Reviews 30: 309382.CrossRefGoogle ScholarPubMed
Gray, MJ, Freitag, NE and Boor, KJ (2006). How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr Jekyll to pathogenic Mr Hyde. Infection and Immunity 74: 25052512.CrossRefGoogle ScholarPubMed
Grone, M, Scheffer, J and Konig, W (1992). Modulation of leukotriene generation by invasive bacteria. Immunology 77: 400407.Google ScholarPubMed
Hamada, S, Umemura, M, Shiono, T, Tanaka, K, Yahagi, A, Begum, MD, Oshiro, K, Okamoto, Y, Watanabe, H, Kawakami, K, Roark, C, Born, WK, O'Brien, R, Ikuta, K, Ishikawa, H, Nakae, S, Iwakura, Y, Ohta, T and Matsuzaki, G (2008). IL-17A produced by gamma-delta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. Journal of Immunology 181: 34563463.CrossRefGoogle Scholar
Harris, LK (2011). Review: Trophoblast–vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta 31 (Suppl.): S93S98.CrossRefGoogle Scholar
Hawkridge, T, Scriba, TJ, Gelderbloem, S, Smit, E, Tameris, M, Moyo, S, Lang, T, Veldsman, A, Hatherill, M, Merwe, Lv, Fletcher, HA, Mahomed, H, Hill, AV, Hanekom, WA, Hussey, GD and McShane, H (2008). Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. Journal of Infectious Diseases 198: 544552.CrossRefGoogle ScholarPubMed
Hayashi, F, Smith, KD, Ozinsky, A, Hawn, TR, Yi, EC, Goodlett, DR, Eng, JK, Akira, S, Underhill, DM and Aderem, A (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 10991103.CrossRefGoogle ScholarPubMed
Huff, GR, Huff, WE, Dutta, V, Johnson, MG and Nannapaneni, R (2008). Pathogenicity of Listeria monocytogenes Scott A after oral and oculonasal challenges of day-old turkey poults. Avian Diseases 52: 444450.CrossRefGoogle Scholar
Hume, OS (1976). Maternal Listeria monocytogenes septicemia with sparing of the fetus. Obstetrics and Gynecology 48: 33S34S.Google ScholarPubMed
Johnston, WH, Morton, SA, Wong, MH and Roy, TE (1955). Septicaemia of the newborn due to Listeria monocytogenes. Canadian Medical Association Journal 73: 402405.Google ScholarPubMed
Kathariou, S (2002). Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of Food Protection 65: 18111829.CrossRefGoogle ScholarPubMed
Kaufmann, SH (1993). Immunity to intracellular bacteria. Annual Review of Immunology 11: 129163.Google Scholar
Kawaguchi, M, Adachi, M, Oda, N, Kokubu, F and Huang, SK (2004). IL-17 cytokine family. Journal of Allergy and Clinical Immunology 114: 12651273.CrossRefGoogle ScholarPubMed
Kelemen, K, Paldi, A, Tinneberg, H, Torok, A and Szekeres-Bartho, J (1998). Early recognition of pregnancy by the maternal immune system. American Journal of Reproductive Immunology 39: 351355.CrossRefGoogle ScholarPubMed
Khelef, N, Lecuit, M, Bierne, H and Cossart, P (2006). Species specificity of the Listeria monocytogenes InlB protein. Cellular Microbiology 8: 457470.CrossRefGoogle ScholarPubMed
King, BF and Mais, JJ (1982). Developmental changes in rhesus monkey placental villi and cell columns. Scanning electron microscopy. Anatomy and Embryology (Berlin) 165: 361376.CrossRefGoogle ScholarPubMed
Kohda, C, Kawamura, I, Baba, H, Nomura, T, Ito, Y, Kimoto, T, Watanabe, I and Mitsuyama, M (2002). Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infection and Immunity 70: 13341341.CrossRefGoogle ScholarPubMed
Kolls, JK and Linden, A (2004). Interleukin-17 family members and inflammation. Immunity 21: 467476.Google Scholar
Lammerding, AM, Glass, KA, Gendron-Fitzpatrick, A and Doyle, MP (1992). Determination of virulence of different strains of Listeria monocytogenes and Listeria innocua by oral inoculation of pregnant mice. Applied and Environmental Microbiology 58: 39914000.CrossRefGoogle ScholarPubMed
Lamont, RF, Sobel, J, Mazaki-Tovi, S, Kusanovic, JP, Vaisbuch, E, Kim, SK, Uldbjerg, N and Romero, R (2011). Listeriosis in human pregnancy: a systematic review. Journal of Perinatal Medicine 39: 227236.CrossRefGoogle ScholarPubMed
Lecuit, M (2007). Human listeriosis and animal models. Microbes and Infection 9: 12161225.CrossRefGoogle ScholarPubMed
Lecuit, M, Dramsi, S, Gottardi, C, Fedor-Chaiken, M, Gumbiner, B and Cossart, P (1999). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO Journal 18: 39563963.CrossRefGoogle ScholarPubMed
Lecuit, M, Nelson, DM, Smith, SD, Khun, H, Huerre, M, Vacher-Lavenu, MC, Gordon, JI and Cossart, P (2004). Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proceedings of the National Academy of Science of the United States of America 101: 61526157.CrossRefGoogle ScholarPubMed
Lecuit, M, Vandormael-Pournin, S, Lefort, J, Huerre, M, Gounon, P, Dupuy, C, Babinet, C and Cossart, P (2001). A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292: 17221725.Google Scholar
Leimeister-Wachter, M, Domann, E and Chakraborty, T (1992). The expression of virulence genes in Listeria monocytogenes is thermoregulated. Journal of Bacteriology 174: 947952.CrossRefGoogle ScholarPubMed
Lennon, D, Lewis, B, Mantell, C, Becroft, D, Dove, B, Farmer, K, Tonkin, S, Yeates, N, Stamp, R and Mickleson, K (1984). Epidemic perinatal listeriosis. Pediatric Infectious Disease 3: 3034.CrossRefGoogle ScholarPubMed
Lin, L, Ibrahim, AS, Xu, X, Farber, JM, Avanesian, V, Baquir, B, Fu, Y, French, SW, Edwards, JE Jr and Spellberg, B (2009). Th1–Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathogens 5: e1000703.CrossRefGoogle ScholarPubMed
Lin, Y, Slight, SR and Khader, SA (2010). Th17 cytokines and vaccine-induced immunity. Seminars in Immunopathology 32: 7990.CrossRefGoogle ScholarPubMed
Linnan, MJ, Mascola, L, Lou, XD, Goulet, V, May, S, Salminen, C, Hird, DW, Yonekura, ML, Hayes, P, Weaver, R, Audurier, A, Plikaytis, BD, Shirley, FL, Kleks, A, Broome, CV (1988). Epidemic listeriosis associated with Mexican-style cheese. New England Journal of Medicine 319: 823828.CrossRefGoogle ScholarPubMed
Lorber, B (1997). Listeriosis. Clinical Infectious Diseases 24: 19.CrossRefGoogle ScholarPubMed
Lund, BM and O'Brien, SJ (2011). The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathogens and Disease 8: 961973.CrossRefGoogle ScholarPubMed
Machata, S, Tchatalbachev, S, Mohamed, W, Jansch, L, Hain, T and Chakraborty, T (2008). Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. Journal of Immunology 181: 20282035.CrossRefGoogle ScholarPubMed
McLauchlin, J (1990). Human listeriosis in Britain, 1967–85, a summary of 722 cases. 1. Listeriosis during pregnancy and in the newborn. Epidemiology and Infection 104: 181189.Google Scholar
Miki, K and Mackaness, GB (1964). The passive transfer of acquired resistance to Listeria monocytogenes. Journal of Experimental Medicine 120: 93103.CrossRefGoogle ScholarPubMed
Milon, G (1997). Listeria monocytogenes in laboratory mice: a model of short-term infectious and pathogenic processes controllable by regulated protective immune responses. Immunological Reviews 158: 3746.CrossRefGoogle Scholar
MMWR (1998). Multistate outbreak of listeriosis—United States, 1998. MMWR Morbidity and Mortality Weekly Report 47: 10851086.Google Scholar
MMWR (1999). Update: multistate outbreak of listeriosis—United States (1998–1999). MMWR Morbidity and Mortality Weekly Report 47: 11171118.Google Scholar
Mook, P, O'Brien, SJ and Gillespie, IA (2011). Concurrent conditions and human listeriosis, England, 1999–2009. Emerging Infectious Diseases 17: 3843.Google Scholar
Moors, MA, Levitt, B, Youngman, P and Portnoy, DA (1999). Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infection and Immunity 67: 131139.CrossRefGoogle ScholarPubMed
Mucida, D, Park, Y, Kim, G, Turovskaya, O, Scott, I, Kronenberg, M and Cheroutre, H (2007). Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256260.Google Scholar
Mylonakis, E, Paliou, M, Hohmann, EL, Calderwood, SB and Wing, EJ (2002). Listeriosis during pregnancy: a case series and review of 222 cases. Medicine (Baltimore) 81: 260269.Google Scholar
Orgun, NN, Mathis, MA, Wilson, CB and Way, SS (2008). Deviation from a strong Th1-dominated to a modest Th17-dominated CD4T cell response in the absence of IL-12p40 and type I IFNs sustains protective CD8T cells. Journal of Immunology 180: 41094115.Google Scholar
Osebold, JW and Sawyer, MT (1957). Immunization studies on listeriosis in mice. Journal of Immunology 78: 262268.Google Scholar
Ostojic, S, Dubanchet, S, Chaouat, G, Abdelkarim, M, Truyens, C and Capron, F (2003). Demonstration of the presence of IL-16, IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. American Journal of Reproductive Immunology 49: 101112.CrossRefGoogle ScholarPubMed
Pamer, EG (2004). Immune responses to Listeria monocytogenes. Nature Reviews Immunology 4: 812823.Google Scholar
Portnoy, DA, Schreiber, RD, Connelly, P and Tilney, LG (1989). Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. Journal of Experimental Medicine 170: 21412146.CrossRefGoogle Scholar
Posfay-Barbe, KM and Wald, ER (2009). Listeriosis. Seminars in Fetal and Neonatal Medicine 14: 228233.CrossRefGoogle ScholarPubMed
Poulsen, KP, Faith, NG, Steinberg, H and Czuprynski, CJ (2011). Pregnancy reduces the genetic resistance of C57BL/6 mice to Listeria monocytogenes infection by intragastric inoculation. Microbial Pathogenesis 50: 360366.CrossRefGoogle ScholarPubMed
Poulsen, KP, Faith, NG, Steinberg, H and Czuprynski, CJ (2013). Bacterial load and inflammation in fetal tissues is not dependent on IL-17a or IL-22 in 10–14 day pregnant mice infected with Listeria monocytogenes. Microbial Pathogenesis, epub ahead of print.CrossRefGoogle ScholarPubMed
Redline, RW and Lu, CY (1988). Specific defects in the anti-listerial immune response in discrete regions of the murine uterus and placenta account for susceptibility to infection. Journal of Immunology 140: 39473955.CrossRefGoogle ScholarPubMed
Reiss, HJ and Krebs, A (1951). Septic granulomatosis in infants, a fetal sepsis caused by a specific pathogen. Klin Wochenschr 29: 29.CrossRefGoogle ScholarPubMed
Relier, JP (1979). Perinatal and neonatal infections: listeriosis. Journal of Antimicrobial Chemotherapy 5 (Suppl. A): 5157.CrossRefGoogle ScholarPubMed
Renzoni, A, Cossart, P and Dramsi, S (1999). PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Molecular Microbiology 34: 552561.CrossRefGoogle Scholar
Robbins, JR, Skrzypczynska, KM, Zeldovich, VB, Kapidzic, M and Bakardjiev, AI (2010). Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathogens 6: e1000732.CrossRefGoogle Scholar
Rocourt, J, Jacquet, C and Reilly, A (2000). Epidemiology of human listeriosis and seafoods. International Journal of Food Microbiology 62: 197209.CrossRefGoogle ScholarPubMed
Sa, SM, Valdez, PA, Wu, J, Jung, K, Zhong, F, Hall, L, Kasman, I, Winer, J, Modrusan, Z, Danilenko, DM and Ouyang, W (2007). The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. Journal of Immunology 178: 22292240.Google Scholar
Schluter, D, Domann, E, Buck, C, Hain, T, Hof, H, Chakraborty, T and Deckert-Schlüter, M (1998). Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infection and Immunity 66: 59305938.Google Scholar
Schubert, WD, Urbanke, C, Ziehm, T, Beier, V, Machner, MP, Domann, E, Wehland, J, Chakraborty, T and Heinz, DW (2002). Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111: 825836.CrossRefGoogle Scholar
Schuchat, A, Swaminathan, B and Broome, CV (1991). Epidemiology of human listeriosis. Clinical Microbiology Reviews 4: 169183.CrossRefGoogle ScholarPubMed
Scriba, TJ, Kalsdorf, B, Abrahams, DA, Isaacs, F, Hofmeister, J, Black, G, Hassan, HY, Wilkinson, RJ, Walzl, G, Gelderbloem, SJ, Mahomed, H, Hussey, GD and Hanekom, WA (2008). Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. Journal of Immunology 180: 19621970.CrossRefGoogle Scholar
Smith, AR, Lieberman, BA, Allen, L and Barson, AJ (1983). Listeriosis and pregnancy. Lancet 2: 1364.CrossRefGoogle ScholarPubMed
Sonnenberg, GF, Nair, MG, Kirn, TJ, Zaph, C, Fouser, LA and Artis, D (2010). Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. Journal of Experimental Medicine 207: 12931305.CrossRefGoogle ScholarPubMed
Southwick, FS and Purich, DL (1996). Intracellular pathogenesis of listeriosis. New England Journal of Medicine 334: 770776.CrossRefGoogle ScholarPubMed
Svabic-Vlahovic, M, Pantic, D, Pavicic, M and Bryner, JH (1988). Transmission of Listeria monocytogenes from mother's milk to her baby and to puppies. Lancet 2: 1201.CrossRefGoogle ScholarPubMed
Swaminathan, B and Gerner-Smidt, P (2007). The epidemiology of human listeriosis. Microbes and Infection 9: 12361243.CrossRefGoogle ScholarPubMed
Swaminathan, B, Barrett, TJ, Hunter, SB and Tauxe, RV (2001). PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerging Infectious Diseases 7: 382389.CrossRefGoogle Scholar
Takahashi, K, Naito, M, Katabuchi, H and Higashi, K (1991). Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells. Journal of Leukocyte Biology 50: 5768.CrossRefGoogle Scholar
Tappero, JW, Schuchat, A, Deaver, KA, Mascola, L and Wenger, JD (1995). Reduction in the incidence of human listeriosis in the United States. Effectiveness of prevention efforts? The Listeriosis Study Group. Journal of the American Medical Association 273: 11181122.CrossRefGoogle ScholarPubMed
Torres, D, Barrier, M, Bihl, F, Quesniaux, VJ, Maillet, I, Akira, S, Ryffel, B and Erard, F (2004). Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infection and Immunity 72: 21312139.CrossRefGoogle ScholarPubMed
Unanue, ER (1996). Macrophages, NK cells and neutrophils in the cytokine loop of Listeria resistance. Research in Immunology 147: 499505.CrossRefGoogle ScholarPubMed
Vazquez-Boland, JA, Kuhn, M, Berche, P, Chakraborty, T, Dominguez-Bernal, G, Goebel, W, González-Zorn, B, Wehland, J and Kreft, J (2001). Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews 14: 584640.CrossRefGoogle ScholarPubMed
Wang, C, Zhang, LF, Austin, FW and Boyle, CR (1998). Characterization of Listeria monocytogenes isolated from channel catfish (Ictalurus punctatus). American Journal of Veterinary Research 59: 11251128.CrossRefGoogle ScholarPubMed
Way, SS, Kollmann, TR, Hajjar, AM and Wilson, CB (2003). Cutting edge: protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. Journal of Immunology 171: 533537.CrossRefGoogle ScholarPubMed
Wegmann, TG, Lin, H, Guilbert, L and Mosmann, TR (1993). Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology Today 14: 353356.CrossRefGoogle ScholarPubMed
Whitehead, CE (2009). Management of neonatal llamas and alpacas. Veterinary Clinics of North America Food Animal Practice 25: 353366.CrossRefGoogle ScholarPubMed
Whitley, GS and Cartwright, JE (2009). Trophoblast-mediated spiral artery remodelling: a role for apoptosis. Journal of Anatomy 215: 2126.CrossRefGoogle ScholarPubMed
Williams, D, Castleman, J, Lee, CC, Mote, B and Smith, MA (2009). Risk of fetal mortality after exposure to Listeria monocytogenes based on dose-response data from pregnant guinea pigs and primates. Risk Analysis 29: 14951505.CrossRefGoogle ScholarPubMed
Williams, D, Irvin, EA, Chmielewski, RA, Frank, JF and Smith, MA (2007). Dose-response of Listeria monocytogenes after oral exposure in pregnant guinea pigs. Journal of Food Protection 70: 11221128.CrossRefGoogle ScholarPubMed
Wing, EJ and Gregory, SH (2002). Listeria monocytogenes: clinical and experimental update. Journal of Infectious Diseases 185 (Suppl. 1): S18S24.CrossRefGoogle ScholarPubMed
Wolk, K, Kunz, S, Witte, E, Friedrich, M, Asadullah, K and Sabat, R (2004). IL-22 increases the innate immunity of tissues. Immunity 21: 241254.CrossRefGoogle ScholarPubMed
Xu, W, Presnell, SR, Parrish-Novak, J, Kindsvogel, W, Jaspers, S, Chen, Z, Dillon, SR, Gao, Z, Gilbert, T, Madden, K, Schlutsmeyer, S, Yao, L, Whitmore, TE, Chandrasekher, Y, Grant, FJ, Maurer, M, Jelinek, L, Storey, H, Brender, T, Hammond, A, Topouzis, S, Clegg, CH and Foster, DC (2001). A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proceedings of the National Academy of Sciences of the United States of America 98: 95119516.CrossRefGoogle ScholarPubMed
Yang, J, Yang, M, Htut, TM, Ouyang, X, Hanidu, A, Li, X, Sellati, R, Jiang, H, Zhang, S, Li, H, Zhao, J, Ting, AT, Mayer, L, Unkeless, JC, Labadia, ME, Hodge, M, Li, J and Xiong, H (2008). Epstein–Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t. European Journal of Immunology 38: 12041214.CrossRefGoogle ScholarPubMed
Zeldovich, VB, Robbins, JR, Kapidzic, M, Lauer, P and Bakardjiev, AI (2011). Invasive extravillous trophoblasts restrict intracellular growth and spread of Listeria monocytogenes. PLoS Pathogens 7: e1002005.Google Scholar
Zenewicz, LA, Yancopoulos, GD, Valenzuela, DM, Murphy, AJ, Karow, M and Flavell, RA (2007). Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27: 647659.CrossRefGoogle Scholar