Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T21:16:06.477Z Has data issue: false hasContentIssue false

Recent developments in aluminum-based hydrides for hydrogen storage

Published online by Cambridge University Press:  07 June 2013

Jason Graetz
Affiliation:
HRL Laboratories; jagraetz@hrl.com
Bjørn C. Hauback
Affiliation:
University of Oslo, Department of Physics; bjorn.hauback@fys.uio.no
Get access

Abstract

Aluminum hydride (AlH3), and the complex aluminum hydrides (e.g., M3AlH6, MAlH5, M2AlH7, M(AlH4)n), make up a fascinating class of materials that have received considerable attention over the past 60 years for their use as explosives, reducing agents, solid rocket propellants, as well as a hydrogen source for portable power systems. The recent renaissance in hydrogen storage research, particularly for automotive applications, has generated renewed interest in aluminum-based hydrides due to their capacity to store up to 11 wt% hydrogen with volumetric capacities up to 150 g H2/L (more than twice that of liquid hydrogen). In addition, hydrogen can be released from these materials by low temperature thermolysis (<100°C), making them well-suited for proton exchange membrane fuel cells and other low temperature applications. This article covers recent research on aluminum-based hydrides, including crystal structures, thermodynamics, kinetics, hydrogenation conditions, and regeneration methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sandrock, G., J. Alloys Compd. 293295, 877 (1999).CrossRefGoogle Scholar
Graetz, J., Chem. Soc. Rev. 38, 73 (2009).CrossRefGoogle Scholar
Graetz, J., Reilly, J.J., Yartys, V.A., Maehlen, J.P., Bulychev, B.M., Antonov, V.E., Tarasov, B.P., Gabis, I.E., J. Alloys Compd. 509, S517 (2011).CrossRefGoogle Scholar
Orimo, S., Nakamori, Y., Eliseo, J.R., Zuttel, A., Jensen, C.M., Chem. Rev. 107, 4111 (2007).CrossRefGoogle Scholar
Jain, I.P., Jain, P., Jain, A., J. Alloys Compd. 503, 303 (2010).CrossRefGoogle Scholar
Graetz, J., Reilly, J.J., Scripta Materialia 56, 835 (2007).CrossRefGoogle Scholar
Hauback, B.C., Z. Kristogr. 223, 636 (2008).CrossRefGoogle Scholar
Tarasov, V.P., Kirakosyan, G.A., Russ. J. Inorg. Chem. 53, 2048 (2008).CrossRefGoogle Scholar
Wiberg, E., Lacal, R.U., Zeit. Naturf. 6b, 392 (1951).Google Scholar
Sato, T., Sørby, M.H., Ikeda, K., Sato, S., Hauback, B.C., Orimo, S., J. Alloys Compd. 487, 472 (2009).CrossRefGoogle Scholar
Andreasen, A., J. Alloys Compd. 419, 40, (2006).CrossRefGoogle Scholar
Bogdanovic, B., Schwickardi, M., J. Alloys Compd. 253254, 1 (1997).CrossRefGoogle Scholar
Graetz, J., Lee, Y., Reilly, J.J., Park, S., Vogt, T., Phys. Rev. B, 71, 184115 (2005).CrossRefGoogle Scholar
Mosegaard Arnbjerg, L., Jensen, T.R., Int. J. Hydrogen Energy, 37, 345 (2012).CrossRefGoogle Scholar
Zidan, R.A., Takara, S., Hee, A.G., Jensen, C.M., J. Alloys Compd. 285, 119 (1999).CrossRefGoogle Scholar
Bogdanovic, B., Brand, R.A., Marjanovic, A., Schwickardi, M., Tölle, J., J. Alloys Compd. 302, 36 (2000).CrossRefGoogle Scholar
Zaluska, A., Zaluski, L., Ström-Olsen, J.O., J. Alloys Compd. 298, 125 (2000).CrossRefGoogle Scholar
Bogdanovic, B., Felderhoff, M., Pommerin, A., Schüth, F., Spielkamp, N., Adv. Mater. 18, 1198 (2006).CrossRefGoogle Scholar
Srinivasan, S.S., Brinks, H.W., Hauback, B.C., Sun, D., Jensen, C.M., J. Alloys Compd. 377, 283 (2004).CrossRefGoogle Scholar
Anton, D., Mosher, D., Xia, T., Brown, R., Arsenault, S., Saitta, A., et al., High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides (US Department of Energy, Washington, DC, 2007).Google Scholar
Johnson, T.A., Jorgensen, S., Dedrick, D.E., Faraday Discuss. 151, 327 (2011).CrossRefGoogle Scholar
Bellosta von Colbe, J.M., Metz, O., Lozano, G.A., Pranzas, P.K., Schmitz, H.W., Beckmann, F., Schreyer, A., Klassen, T., Dornheim, M., Int. J. Hydrogen Energy 37, 2807 (2012).CrossRefGoogle Scholar
Matsunaga, T., Buchter, F., Miwa, K., Towata, S., Orimo, S., Zuttel, A., Renewable Energy 33, 193 (2008).CrossRefGoogle Scholar
Ronnebro, E., Majzoub, E.H., J. Phys. Chem. B 110, 25686 (2006).CrossRefGoogle Scholar
Brinks, H.W., Fossdal, A., Hauback, B.C., J. Phys. Chem. C 112, 5658 (2008).CrossRefGoogle Scholar
Mamatha, M., Bogdanovic, B., Felderhoff, M., Pommerin, A., Schmidt, W., Schuth, F., Weidenthaler, C., J. Alloys Compd. 407, 78 (2006).CrossRefGoogle Scholar
Tang, X., Opalka, S.M., Laube, B.L., Wu, F.J., Strickler, J.R., Anton, D.L., J. Alloys Compd. 446447, 228 (2007).CrossRefGoogle Scholar
Liu, D.M., Qian, Z.X., Si, T.Z., Zhang, Q.A.J. Alloys Compd. 520, 202 (2012).CrossRefGoogle Scholar
Fonneløp, J.E., Corno, M., Grove, H., Pinatel, E., Sørby, M.H., Ugliengo, P., Baricco, M., Hauback, B.C., J. Alloys Compd. 509, 10 (2011).CrossRefGoogle Scholar
Kim, K.C., Dai, B., Johnson, J.K., Sholl, D.S., Nanotechnology 20, 204001 (2009).CrossRefGoogle Scholar
Gao, J., Adelhelm, P., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., and de Jongh, P.E., J. Phys. Chem. C, 114, 4675 (2010).CrossRefGoogle Scholar
Lohstroh, W., Roth, A., Hahn, H., Fichtner, M., Chem. Phys. Chem. 11, 789 (2010).CrossRefGoogle Scholar
Zidan, R., Garcia-Diaz, B.L., Fewox, C.S., Stowe, A.C., Gray, J.R., Harter, A.G., Chem. Commun. 3717 (2009).Google Scholar
Graetz, J., Wegrzyn, J., Reilly, J.J., J. Amer. Chem. Soc. 130, 17790 (2008).CrossRefGoogle Scholar
Liu, X., McGrady, G.S., Langmi, H.W., Jensen, C.M., J. Amer. Chem. Soc. 131, 5032 (2009).CrossRefGoogle Scholar
Lacina, D., Yang, L., Chopra, I., Muckerman, J., Chabal, Y., Graetz, J., Phys. Chem. Chem. Phys. 14, 6569 (2012).CrossRefGoogle Scholar
Lacina, D., Wegrzyn, J., Reilly, J., Johnson, J., Celebi, Y., Graetz, J., J. Phys. Chem. C 115, 3789 (2011).CrossRefGoogle Scholar
Graetz, J., Chaudhari, S., Wegrzyn, J., Celebi, Y., Johnson, J.R., Zhou, W., Reilly, J.J., J. Phys. Chem. C, 111, 19148 (2007).CrossRefGoogle Scholar
Lacina, D., Reilly, J., Johnson, J., Wegrzyn, J., Graetz, J., J. Alloys Compd. 509S, S654 (2011).CrossRefGoogle Scholar
Lacina, D., Wegrzyn, J., Reilly, J., Celebi, Y., Graetz, J., Energy Environ. Sci. 3, 1099 (2010).CrossRefGoogle Scholar
Klebanoff, L., Five-Year Review of Metal Hydride Center of Excellence (DOE H2 Program Annual Merit Review, Washington, DC, 2010).Google Scholar