Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T22:40:28.967Z Has data issue: false hasContentIssue false

Memory Characteristics of Filament Confined in Tiny ReRAM Structure

Published online by Cambridge University Press:  22 May 2013

S. G. Koh
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
K. Kinoshita
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori Univ. Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
T. Fukuhara
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
Y. Sawai
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
S. Kishida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori Univ. Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
Get access

Abstract

Clarification of memory characteristics of tiny cell is important for practical use of resistive random access memory (ReRAM). However, limitation of semiconductor micro-fabrication technology hinders to obtain memory characteristics in tiny cell with an area comparable to the size of filaments. In this paper, we established a method to prepare a very small memory cell by fabricating ReRAM structure on the tip of a cantilever of atomic force microscope (AFM). We also established a method to avoid the overshoot of set current. As a result, reset current was successfully reduced enough to suppress serious damage to the cantilever. The effective cell size was estimated to be less than 10 nm in diameter due to electric field concentration at the tip of the cantilever, which was confirmed by an electric field simulator based on finite element method. We performed a unique experiment to verify the presence of oxygen pool in an anode, by utilizing removable bottom electrode structure. The result was not consistent with resistive switching models that require the anode to play a role as an oxygen reservoir.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, B. J., Cho, S. H., Park, M. L., Park, S. K., Lee, Y. B., Cho, M. K., Ahn, K. O., Bae, G. H. and Park, S. W.: IEEE international Symposium on Circuits and Systems 420 (2012).Google Scholar
Sawa, A.: Materials Today 11, 28 (2008).CrossRefGoogle Scholar
Baek, I. G., Lee, M. S., Seo, S., Lee, M. J., Seo, D. H., Suh, D.-S., Park, J. C., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U-In and Moon, J. T.: Tech. Dig. Int. Electron Devices Meet. 587 (2004).Google Scholar
Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M. and Sugiyama, Y.: Tech. Dig. Int. Electron Devices Meet. 767 (2007).Google Scholar
Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., Williams, R. S.: Nanotechnology 22, 485203 (2011).CrossRefGoogle Scholar
Lee, M.-J., Lee, C. B., Lee, D., Lee, S. R., Chang, M., Hur, J. H., Kim, Y.-B., Kim, C.-J., Seo, D. H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: Nat. Mater. 10, 625 (2011).CrossRefGoogle Scholar
Gao, B., Zhang, H. W., Yu, S., Sun, B., Liu, L. F., Liu, X. Y., Wang, Y., Han, R. Q., Kang, J. F., Yu, B. and Wang, Y. Y.: Symposium on VLSI Technology Digest of Technical Papers 30 (2009).Google Scholar
Wei, Z., Takagi, T., Kanzawa, Y., Katoh, Y., Ninomiya, T., Kawai, K., Muraoka, S., Mitani, S., Katayama, K., Fujii, S., Miyanaga, R., Kawashima, Y., Mikawa, T., Shimakawa, K., and Aono, K.: Tech. Dig. Int. Electron Devices Meet. 31.4.1 (2011).Google Scholar
Ronse, K.; Bisschop, De, Vandenberghe, P., Hendrickx, G., Gronheid, E., Pret, R., Vaglio, A.; Mallik, A.; Verkest, D.; Steegen, A. : Tech. Dig. Int. Electron Devices Meet. 18.5.1 (2012).Google Scholar
Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., and Sugiyama, Y.: Appl. Phys. Lett. 93, 033506 (2008).CrossRefGoogle Scholar
Rao, K. V. and Smakula, A.: J. Appl. Phys. 36, 2031 (1965).CrossRefGoogle Scholar
Akinaga, H. and Shima, H.: Proc. IEEE 98, 2273 (2010).CrossRefGoogle Scholar
Yu, Shimeng and Philip Wong, H.-S.: IEEE Electron Device Lett. 31, 1455 (2010).CrossRefGoogle Scholar
Chen, M. C., Chang, T. C., Tsai, C. T., Huang, S. Y., Chen, S. C., Hu, C. W., Sze, S. M. and Tsai, M. J.: Appl. Phys. Lett. 96, 262110 (2010).CrossRefGoogle Scholar
Gland, J. L.: Surface Sci. 93, 487 (1980).CrossRefGoogle Scholar