Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T10:00:01.567Z Has data issue: false hasContentIssue false

SELF-APPROXIMATION FOR THE RIEMANN ZETA FUNCTION

Published online by Cambridge University Press:  31 October 2012

TAKASHI NAKAMURA
Affiliation:
Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science Noda, Chiba 278-8510, Japan (email: nakamura_takashi@ma.noda.tus.ac.jp)
ŁUKASZ PAŃKOWSKI*
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland (email: lpan@amu.edu.pl)
*
For correspondence; e-mail: lpan@amu.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the paper we deal with self-approximation of the Riemann zeta function in the half plane $\operatorname {Re} s\gt 1$ and in the right half of the critical strip. We also prove some results concerning joint universality and joint value approximation of functions $\zeta (s+\lambda +id\tau )$ and $\zeta (s+i\tau )$.

MSC classification

Type
Research Article
Copyright
Copyright © 2012 Australian Mathematical Publishing Association Inc. 

References

[1]Bagchi, B., ‘Recurrence in topological dynamics and the Riemann hypothesis’, Acta Math. Hung. 50 (1987), 227240.CrossRefGoogle Scholar
[2]Bohr, H., ‘Über das Verhalten von $\zeta (s)$ in der Halbebene $\sigma \gt 1$’, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II (1911), 409428.Google Scholar
[3]Bohr, H., ‘Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwendung auf die Diriehletschen L-Funktionen’, Math. Ann. 85(1) (1922), 115122.CrossRefGoogle Scholar
[4]Garunkštis, R., ‘Self-approximation of Dirichlet $L$-functions’, J. Number Theory 131(7) (2011), 12861295.CrossRefGoogle Scholar
[5]Kaczorowski, J. & Kulas, M., ‘On the non-trivial zeros off line for $L$-functions from extended Selberg class’, Monatsh. Math. 150 (2007), 217232.CrossRefGoogle Scholar
[6]Kaczorowski, J., Laurinčikas, A. & Steuding, J., ‘On the value distribution of shifts of universal Dirichlet series’, Monatsh. Math. 147 (2006), 309317.CrossRefGoogle Scholar
[7]Mishou, H., ‘The joint value distribution of the Riemann zeta function and Hurwitz zeta functions. II.’, Arch. Math. (Basel) 90(3) (2008), 230238.CrossRefGoogle Scholar
[8]Nakamura, T., ‘The joint universality and the generalized strong recurrence for Dirichlet $L$-functions’, Acta Arith. 138(4) (2009), 357362.CrossRefGoogle Scholar
[9]Nakamura, T., ‘The generalized strong recurrence for nonzero rational parameters’, Arch. Math. 95 (2010), 549555.CrossRefGoogle Scholar
[10]Nakamura, T. & Pańkowski, Ł., ‘On universality for linear combinations of $L$-functions’, Monatsh. Math. 165 (2012), 433446.CrossRefGoogle Scholar
[11]Nakamura, T. & Pańkowski, Ł., ‘Erratum to “The generalized strong recurrence for non-zero rational parameters”’, Arch. Math. (Basel) 99(1) (2012), 4347.CrossRefGoogle Scholar
[12]Pańkowski, Ł., ‘Some remarks on the generalized strong recurrence for L-functions’, in: New Directions in Value-Distribution Theory of Zeta and L-functions, Berichte aus der Mathematik (Shaker Verlag, Aachen, 2009), pp. 305315.Google Scholar
[13]Pańkowski, Ł., ‘Hybrid joint universality theorem for the Dirichlet L-functions’, Acta Arith. 141(1) (2010), 5972.CrossRefGoogle Scholar
[14]Steuding, J., Value-Distribution of L-functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).Google Scholar