Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T04:45:13.024Z Has data issue: false hasContentIssue false

Insight into the Compositional and Structural Nano Features of AlN/GaN DBRs by EELS-HAADF

Published online by Cambridge University Press:  09 May 2013

Alberto Eljarrat*
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
Lluís López-Conesa
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
César Magén
Affiliation:
Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza, Spain Fundación ARAID, 50018 Zaragoza, Spain
Žarko Gačević
Affiliation:
Instituto de sistemas optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Sergio Fernández-Garrido
Affiliation:
Instituto de sistemas optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Enrique Calleja
Affiliation:
Instituto de sistemas optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Sónia Estradé
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain TEM-MAT, (CCiT), Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona, Spain
Francesca Peiró
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Dept. Electrónica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
*
*Corresponding author.aeljarrat@el.ub.edu
Get access

Abstract

III-V nitride (AlGa)N distributed Bragg reflector devices are characterized by combined high-angle annular dark-field (HAADF) and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Besides the complete structural characterization of the AlN and GaN layers, the formation of AlGaN transient layers is revealed using Vegard law on profiles of the position of the bulk plasmon peak maximum. This result is confirmed by comparison of experimental and simulated HAADF intensities. In addition, we present an advantageous method for the characterization of nano-feature structures using low-loss EELS spectrum image (EEL-SI) analysis. Information from the materials in the sample is extracted from these EEL-SI at high spatial resolution.The log-ratio formula is used to calculate the relative thickness, related to the electron inelastic mean free path. Fitting of the bulk plasmon is performed using a damped plasmon model (DPM) equation. The maximum of this peak is related to the chemical composition variation using the previous Vegard law analysis. In addition, within the context of the DPM, information regarding the structural properties of the material can be obtained from the lifetime of the oscillation. Three anomalous segregation regions are characterized, revealing formation of metallic Al islands.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 57, 10117 Berlin, Germany

References

Arbiol, J., Estrade, S., Prades, J.D., Cirera, A., Furtmayr, F., Stark, C., Laufer, A., Stutzmann, M., Eickhoff, M., Gass, M.H., Bleloch, A.L., Peiro, F. & Morante, J.R. (2009). Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 20(14), 145704145713.CrossRefGoogle ScholarPubMed
Benaissa, M., Gu, L., Korytov, M., Huault, T., Van Aken, P.A., Brault, J. & Vennegues, P. (2009). Phase separation in GaN/AlGaN quantum dots. Appl Phys Lett 95(14), 141901141904.CrossRefGoogle Scholar
Bernal, S., Botana, F., Calvino, J., Lopez-Cartes, C., Perez-Omil, J. & Rodriguez-Izquierdo, J. (1998). The interpretation of HREM images of supported metal catalysts using image simulation: Profile view images. Ultramicroscopy 72(3-4), 135164.CrossRefGoogle Scholar
Brockt, G. & Lakner, H. (2000). Nanoscale EELS analysis of dielectric function and bandgap properties in GaN and related materials. Micron 31(3), 435440.CrossRefGoogle ScholarPubMed
Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., Ambacher, O. & Stutzmann, M. (1997). Optical constants of epitaxial AlGaN films and their temperature dependence. J Appl Phys 82(10), 50905097.CrossRefGoogle Scholar
Dorneich, A.D., French, R.H., Müllejans, H., Loughlin, S. & Rühle, M. (1998). Quantitative analysis of valence electron energy-loss spectra of aluminium nitride. J Microsc 191, 286296.CrossRefGoogle ScholarPubMed
Egerton, R.F. (2009). Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72, 016502016527.CrossRefGoogle Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.CrossRefGoogle Scholar
Eljarrat, A., Gačević, Ž., Fernández-Garrido, S., Calleja, E., Magén, C., Estradé, S. & Peiró, F. (2011). (V)EELS characterization of InAlN/GaN distributed Bragg reflectors. J Phys Condens Matter 326(1), 012014012018.Google Scholar
Eljarrat, A., Gačević, Ž., Fernández-Garrido, S., Calleja, E., Magén, C., Estradé, S. & Peiró, F. (2012). Optoelectronic properties of InAlN/GaN distributed Bragg reflector heterostructure examined by valence electron energy loss spectroscopy. Microsc Microanal 18(5), 11431154.CrossRefGoogle ScholarPubMed
Gačević, Ž., Fernández-Garrido, S., Hosseini, D., Estradé, S., Peiró, F. & Calleja, E. (2010). InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy. J Appl Phys 108, 113117113124.CrossRefGoogle Scholar
Iakoubovskii, K. & Mitsuishi, K. (2008). Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys Rev B 77(10), 104102104109.CrossRefGoogle Scholar
Ikeda, M. & Uchida, S. (2002). Blue violet laser diodes suitable for Blu-ray disk. Phys Status Solidi 194, 407413.3.0.CO;2-N>CrossRefGoogle Scholar
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy. New York: Springer.CrossRefGoogle Scholar
Kundmann, M. (1988). Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope. PhD Thesis. Berkeley, CA: University of California at Berkeley. Google Scholar
Lazar, S., Bottom, G.A., Wu, M.-Y., Tichelaar, F.D. & Zandbergen, H.W. (2003). Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96(3-4), 535546.CrossRefGoogle ScholarPubMed
Nakamura, S., Pearton, S. & Fasol, G. (1997). The Blue Laser Diode. The Complete Story. New York: Springer.Google Scholar
Palisaitis, J., Hsiao, C.-L., Junai, M., Xie, M., Darakchieva, V., Carlin, J.-F., Birch, N.G.J., Hultman, L. & Persson, P.O.A. (2011). Standard-free composition measurements of Al x In1–x N by low-loss electron energy loss spectroscopy. Phys Stat Sol RRL 5(2), 5052.CrossRefGoogle Scholar
Perez-Omil, J. (1994). Interpretación sistemática de imágenes de microscopía electrónica de alta resolución de materiales policristalinos. Estudio de catalizadores metálicos soportados. PhD Thesis. Cádiz, Spain: University of Cadiz. Google Scholar
Sánchez, A.M., Beanland, R., Gass, M.H., Papworth, A.J., Goodhew, P.J. & Hopkinson, M. (2005). Mapping quantum dot-in-well structures on the nanoscale using the plasmon peak in electron energy loss spectra. Phys Rev B 72(7), 075339075347.CrossRefGoogle Scholar
Wu, C.M., Zhang, B.P., Shang, J.Z., Cai, L.E., Zhang, J.Y., Yu, J.Z. & Wang, Q.M. (2011). High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD. Semicond Sci Tec 26, 055013055018.Google Scholar