Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T05:16:09.742Z Has data issue: false hasContentIssue false

Backwards is the way forward: Feedback in the cortical hierarchy predicts the expected future

Published online by Cambridge University Press:  10 May 2013

Lars Muckli
Affiliation:
Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom. Lars.Muckli@glasgow.ac.uklucyp@psy.gla.ac.ukFraser.Smith@glasgow.ac.ukhttp://muckli.psy.gla.ac.uk/
Lucy S. Petro
Affiliation:
Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom. Lars.Muckli@glasgow.ac.uklucyp@psy.gla.ac.ukFraser.Smith@glasgow.ac.ukhttp://muckli.psy.gla.ac.uk/
Fraser W. Smith
Affiliation:
Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom. Lars.Muckli@glasgow.ac.uklucyp@psy.gla.ac.ukFraser.Smith@glasgow.ac.ukhttp://muckli.psy.gla.ac.uk/

Abstract

Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models).

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W. & Muckli, L. (2010) Stimulus predictability reduces responses in primary visual cortex. Journal of Neuroscience 30:2960–66.Google Scholar
Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupe, J. M., Bullier, J. & Lund, J. S. (2002) Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22:8633–864.CrossRefGoogle ScholarPubMed
de Gardelle, V., Waszczuk, M., Egner, T. & Summerfield, C. (2012) Concurrent repetition enhancement and suppression responses in extrastriate visual cortex. Cerebral Cortex. [Epub ahead of print: July 18, 2012]. doi: 10.1093/cercor/bhs211.Google Scholar
de-Wit, L. H., Kubilius, J., Wagemans, J. & Op de Beeck, H. P. (2012) Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts. Journal of Vision 12:114.Google Scholar
Erlhagen, W. (2003) Internal models for visual perception. Biological Cybernetics 88:409–17.Google Scholar
Grossberg, S. (2013) Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks 37:147.CrossRefGoogle ScholarPubMed
Hesselmann, G., Kell, C. A. & Kleinschmidt, A. (2010) Predictive coding or evidence accumulation? False inference and neuronal fluctuations PloS One 5(3):9926Google Scholar
Hohwy, J. (2012) Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology 3:96, 114. doi: 10.3389/fpsyg.2012.00096.CrossRefGoogle ScholarPubMed
Kok, P., Jehee, J. F. & de Lange, F. P. (2012) Less is more: Expectation sharpens representations in the primary visual cortex. Neuron 75(2):265–70.Google Scholar
Muckli, L., Kohler, A., Kriegeskorte, N. & Singer, W. (2005) Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS (Public Library of Science) Biology l3:e265.Google Scholar
Muckli, L. & Petro, L.S. (2013) Network interactions: Non-geniculate input to V1. Current Opinion in Neurobiology 23(2):195201.Google Scholar
Rao, R. P. N. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987.CrossRefGoogle ScholarPubMed
Sanders, L. L., Muckli, L., de Millas, W., Lautenschlager, M., Heinz, A., Kathmann, N. & Sterzer, P. (2012) Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia. Psychiatry Research. [Epub ahead of print: April 28, 2012]. Available at: http://dx.doi.org/10.1016/j.psychres.2012.03.006.Google Scholar
Smith, F. W. & Muckli, L. (2010) Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences USA 16:20099–103.Google Scholar
Spratling, M. W. (2008b) Reconciling predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience 2(4):18.Google Scholar
Van Essen, D. C. (2005) Corticocortical and thalamocortical information flow in the primate visual system. Progress in Brain Research 149:173–85.Google Scholar
Vetter, P., Edwards, G. & Muckli, L. (2012) Transfer of predictive signals across saccades. Frontiers in Psychology 3 (176):110.Google Scholar
Vetter, P., Grosbras, M. H. & Muckli, L. (under revision) TMS over V5 disrupts motion predictability.Google Scholar