Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T11:14:45.366Z Has data issue: false hasContentIssue false

Multipodal and Multilayer TiO2 Nanotube Arrays: Hierarchical Structures for Energy Harvesting and Sensing

Published online by Cambridge University Press:  09 May 2013

Arash Mohammadpour
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, 9107 – 116 St, Edmonton, AB T6G 2V4, Canada.
Samira Farsinezhad
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, 9107 – 116 St, Edmonton, AB T6G 2V4, Canada.
Ling-Hsuan Hsieh
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, 9107 – 116 St, Edmonton, AB T6G 2V4, Canada.
Karthik Shankar
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, 9107 – 116 St, Edmonton, AB T6G 2V4, Canada. National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
Get access

Abstract

Our ability to fabricate multipodal and multilayer TiO2 nanotube arrays enables us to increase performance and functionality in light harvesting devices such as excitonic solar cells and photocatalysts. Using a combination of simulations and experiments, we show that multilayer nanotube arrays enable photon management in the active toward enhancing the absorption and utilization of incident light. We show that the simultaneous utilization of TiO2 nanotubes with large (∼450 nm) and small (∼80 nm) diameters in stacked multilayer films increased light absorption and photocurrent in solar cells. Such enhanced light absorption is particularly desirable in the near-infrared region of the solar spectrum in which most excitonic solar cells suffer from poor quantum efficiencies and for blue photons at the TiO2 band-edge where significant room exists for improvement of photocatalytic quantum yields. Under AM 1.5 one sun illumination, multilayer nanotube arrays afforded us an approximately 20% improvement in photocurrent over single layer nanotube array films of the same thickness for N-719 sensitized liquid junction solar cells. Also, the possibility of multipodal TiO2 nanotube growth with different electrolyte recipes is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).CrossRefGoogle Scholar
Sun, W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q. and Peng, L.M.: CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124 (2008).CrossRefGoogle ScholarPubMed
Zhu, K., Neale, N.R., Miedaner, A. and Frank, A.J.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).CrossRefGoogle ScholarPubMed
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K. and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S.: A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362 (2007).CrossRefGoogle Scholar
Macak, J.M., Zlamal, M., Krysa, J. and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007).CrossRefGoogle ScholarPubMed
Yu, J.G., Dai, G.P. and Huang, B.B.: Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays. J. Phys. Chem. C 113, 16394 (2009).CrossRefGoogle Scholar
Varghese, O.K., Gong, D.W., Paulose, M., Ong, K.G. and Grimes, C.A.: Hydrogen sensing using titania nanotubes. Sens. Actuator B-Chem. 93, 338 (2003).CrossRefGoogle Scholar
Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V. and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).CrossRefGoogle Scholar
Pang, X.Y., He, D.M., Luo, S.L. and Cai, Q.Y.: An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuator B-Chem. 137, 134 (2009).CrossRefGoogle Scholar
Bao, S.J., Li, C.M., Zang, J.F., Cui, X.Q., Qiao, Y. and Guo, J.: New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater. 18, 591 (2008).CrossRefGoogle Scholar
Bauer, S., Park, J., von der Mark, K. and Schmuki, P.: Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater. 4, 1576 (2008).CrossRefGoogle ScholarPubMed
Bauer, S., Park, J., Faltenbacher, J., Berger, S., von der Mark, K. and Schmuki, P.: Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integr. Biol. 1, 525 (2009).CrossRefGoogle Scholar
Kar, P., Pandey, A., Greer, J.J. and Shankar, K.: Ultrahigh sensitivity assays for human cardiac troponin I using TiO2 nanotube arrays. Lab Chip 12, 821 (2012).CrossRefGoogle ScholarPubMed
Song, Y.Y., Schmidt-Stein, F., Bauer, S. and Schmuki, P.: Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J. Am. Chem. Soc. 131, 4230 (2009).CrossRefGoogle ScholarPubMed
Popat, K.C., Eltgroth, M., La Tempa, T.J., Grimes, C.A. and Desai, T.A.: Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 3, 1878 (2007).CrossRefGoogle ScholarPubMed
Mohammadpour, A., Waghmare, P.R., Mitra, S.K. and Shankar, K.: Anodic Growth of Large-Diameter Multipodal TiO2 Nanotubes. ACS Nano 4, 7421 (2010).CrossRefGoogle ScholarPubMed
Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M. and Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).CrossRefGoogle ScholarPubMed
Rand, B.P., Peumans, P. and Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519 (2004).CrossRefGoogle Scholar