Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T19:45:30.416Z Has data issue: false hasContentIssue false

Extensions panachées autoduales

Published online by Cambridge University Press:  06 March 2013

Daniel Bertrand*
Affiliation:
Institut de Mathématiques de Jussieubertrand@math.jussieu.fr
Get access

Abstract

We study self-duality of Grothendieck's blended extensions in the context of a tannakian category. The set of equivalence classes of symmetric, resp. antisymmetric, blended extensions is naturally endowed with a torsor structure, which enables us to compute the unipotent radical of the associated monodromy groups in various situations.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

BK.Barbieri-Viale, L., Kahn, B.: On the derived category of 1-motives; arXiv : math.AG 1009.1900 (voir aussi Prépubl. Math. IHÉS, M/07/22, Juin 2007).Google Scholar
Be.Bertolin, C. : Le radical unipotent du groupe de Galois motivique d'un 1-motif; Math. Ann. 327 (2003), 585607.Google Scholar
B1.Bertrand, D. : Relative splittings of one-motives; Contemp. Maths 210 (1998), 317Google Scholar
B2.Bertrand, D. : Unipotent radicals of differential Galois groups; Math. Ann. 321 (2001), 645666.CrossRefGoogle Scholar
B3.Bertrand, D. : Extensions panachées et dualité; Prépublications de l'Institut de Mathématiques de Jussieu, No 287, Avril 2001 (non publié).Google Scholar
B4.Bertrand, D. : Special points and Poincaré bi-extensions; with an Appendix by Edixhoven, Bas; arXiv : math.NT 1104.5178v1Google Scholar
Bo.Borel, A. : Linear algebraic groups; PSPM AMS, vol. 9 (1966), 319.Google Scholar
Br.Breen, L. : Biextensions alternées; Compo. Math. 63 (1987), 99122.Google Scholar
By.Brylinski, J-L. : 1-motifs et formes automorphes; Publ. Math. Univ. Paris 7 15 (1983), 43106.Google Scholar
D.Deligne, P. : Théorie de Hodge III; Publ. Math. IHES 44 (1975), 577.Google Scholar
DM.Deligne, P., Milne, J.: Tannakian categories; Springer LN 900 (1982), 101228.Google Scholar
G.Grothendieck, A. : Modèles de Néron et monodromie; SGA VII.1, no 9, Springer LN 288 (1968).Google Scholar
H.Hardouin, C. : Calcul du groupe de Galois différentiel du produit de trois opérateurs complètement réductibles; CRAS Paris 341 (2005), 349352.Google Scholar
K.Kahn, B. : Représentations orthogonales et symplectiques sur un corps de caractéristique différente de 2; Comm. in Algebra 31 (2003), 133196.Google Scholar
M.Milne, J.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles; “Automorphic forms, Shimura varieties and L-functions”, I,; Perspect. Maths 10 (1990), 283411. Academic Press.Google Scholar
RSZ.Ramis, J-P., Sauloy, J., Zhang, C. : Local analytic classification of q-difference equations; arXiv : math.AQ 0903.0853 (à paraître dans Astérisque).Google Scholar
R.Ribet, K. : Cohomological realization of a family of one-motives; J. Number Th. 25 (1987), 152161.Google Scholar
Sh.Shimura, G. : Euler products and Eisenstein series; CBMS Regional Conference Series in Maths 93 (1997), AMS.Google Scholar