Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-26T16:52:54.730Z Has data issue: false hasContentIssue false

Digenean communities in the tufted duck [Aythya fuligula (L., 1758)] and greater scaup [A. marila (L., 1761)] wintering in the north-west of Poland

Published online by Cambridge University Press:  08 June 2012

I. Rząd*
Affiliation:
Department of Ecology and Environment Protection, University of Szczecin, Wąska St. 13, 75-415 Szczecin, Poland
J. Sitko
Affiliation:
Comenius Museum, Moravian Ornithological Station, Horni nam. 1, 75152 Přerov, Czech Republic
K. Kavetska
Affiliation:
Laboratory of Biology and Ecology of Parasites, Judyma St. 20, West Pomeranian University of Technology, 71-466 Szczecin, Poland
E. Kalisińska
Affiliation:
Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wielkopolskich Av. 72, 70-111 Szczecin, Poland
R. Panicz
Affiliation:
Department of Aquaculture, West Pomeranian University of Technology, Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland

Abstract

A total of 124 specimens of the tufted duck, Aythya fuligula, and 63 greater scaup, A. marila, were examined for digenean parasites. Both duck species, which overwinter in a coastal lake connected with the southern Baltic (north-west Poland) were found to support Amblosoma exile, Cyathocotyle prussica,Paracoenogonimus ovatus, Australapatemon minor, Cotylurus cornutus, Echinoparyphium recurvatum, Echinostoma revolutum and Notocotylus attenuatus. In addition, the tufted duck hosted Hypoderaeum conoideum, Bilharziella polonica, Neoeucotyle zakharovi, Renicola mediovitellata, Psilochasmus oxyurus, Psilostomum brevicolle and Cryptocotyle concava; Echinostoma nordiana occurred in the greater scaup only. The two duck species differed significantly in the intensity and abundance of their digenean infection. Aythya marila harboured higher intensity levels and a wider assemblage of digeneans than A. fuligula, and this was likely to be due to differences in the pre-wintering exposure of the duck species to infective stages of these freshwater digeneans. Digenean communities in both duck species, strongly dominated by E. recurvatum, were relatively similar in their structure. No significant sex-dependent differences in digenean infections were revealed, except for the infection with N. attenuatus in A. fuligula. Similarly, there were no significant age-dependent differences (adult versus immature birds) in digenean infections, except for that with N. attenuatus in A. fuligula. The structural similarity between digenean communities in the two duck species is most likely an effect of overlapping diets based on freshwater molluscs, components of the digenean transmission pathway to definitive hosts.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J. & Stimson, W.H. (1988) Sex hormones and the course of parasitic infection. Parasitology Today 4, 189193.CrossRefGoogle Scholar
Betlejewska, K.M. & Korol, E.N. (2002) Taxonomic, topical and quantitative structure of a group of intestinal digeneas of the mallard Anas platyrhynchos Linnaeus, 1758 from Szczecin area. Wiadomości Parazytologiczne 48, 343357.Google Scholar
Bush, A.O. & Holmes, J.C. (1986a) Intestinal helminthes of lesser scaup ducks: patterns of association. Canadian Journal of Zoology 64, 132141.CrossRefGoogle Scholar
Bush, A.O. & Holmes, J.C. (1986b) Intestinal helminthes of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142152.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Bykhovskaya-Pavlovskaya, I.E. (1962) Trematody ptic fauny SSSR. Ekologo- geograficheskiyy obzor. 407 pp. Moscow, Izdatelstvo Akademii Nauk SSSR (in Russian).Google Scholar
Clarke, K.R. & Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edn.Plymouth, PRIMER-E.Google Scholar
Cramp, S. & Simmons, K. (Eds) (1978) Handbook of the birds of Europe, the Middle East and North Africa: The birds of the Western Palearctic: ostrich to ducks, Vol.1. Oxford, Oxford University Press.Google Scholar
Dubinina, M.N. (1971) Parazitologicheskoye issledowaniye ptits. Metody parazitologicheskikh issledowaniy. 139 pp. Leningrad, Akademia Nauk SSSR (in Russian).Google Scholar
Faltýnková, A. (2005) Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitologica 50, 4955.Google Scholar
Gelnar, M., Šebelová, Š., Dušek, L., Koubková, B., Jurajda, P. & Zahrádková, S. (1997) Biodiversity parasites in freshwater environment in relation to pollution. Parasitologia 39, 189199.Google ScholarPubMed
Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210221.CrossRefGoogle Scholar
Holmes, J.C. (1990) Helminth communities in marine fish. pp. 101130in Esch, G., Bush, A. & Aho, J. (Eds) Parasite communities: patterns and processes. London, Chapman & Hall.CrossRefGoogle Scholar
Jeżewski, W. (2004) Occurrence of Digenea (Trematoda) in two Viviparus species from lakes, rivers and a dam reservoir. Helminthologia 41, 147150.Google Scholar
Kavetska, K.M. (2006) Biologiczne i ekologiczne uwarunkowania kształtowania się struktury nematofauny przewodu pokarmowego dzikich kaczek (Anatinae) w północno-zachodniej Polsce. DSc thesis, Akademia Rolnicza w Szczecinie, Szczecin (in Polish).Google Scholar
Kavetska, K.M., Rząd, I. & Sitko, J. (2008) Taxonomic structure of Digenea in wild ducks (Anatinae) from West Pomerania. Wiadomości Parazytologiczne 54, 131136.Google ScholarPubMed
Kennedy, C.R. & Bakke, T.A. (1989) Diversity patterns in helminth communities in common gulls, Larus canus. Parasitology 98, 439445.CrossRefGoogle ScholarPubMed
Kennedy, C.R. & Pojmańska, T. (1996) Richness and diversity of helminth parasite communities in the common carp and in three more recently introduced carp species. Journal of Fish Biology 48, 89100.CrossRefGoogle Scholar
Kennedy, C.R., Bush, A.O. & Aho, J.M. (1986) Patterns in helminth communities: why are birds and fish different? Parasitology 93, 205215.CrossRefGoogle ScholarPubMed
Klein, S.L. (2000) The effects of hormones on sex differences in infection: from genes to behavior. Neuroscience and Behavioral Reviews 24, 627638.CrossRefGoogle Scholar
Magurran, A.E. (2004) Measuring biological diversity. 256 pp. Oxford, Blackwell Publishing.Google Scholar
Mastitsky, S.E. & Veres, J.K. (2010) Field evidence for a parasite spillback caused by exotic mollusc Dreissena polymorpha in an invaded lake. Parasitological Research 106, 667675.CrossRefGoogle Scholar
Mather, D.D. & Esler, E. (1999) Evaluation of bursal depth as an indicator of age class of harlequin ducks. Journal of Field Ornithology 70, 200205.Google Scholar
McDonald, M.E. (1969) Catalogue of helminths of waterfowl (Anatidae). Special Scientific Report, Wildlife. 692 pp. Washington, DC, Bureau of Sport Fisheries and Wildlife.Google Scholar
Našincová, V. (1992) Trematode developmental stages in Czech aquatic snails and life-cycles of selected species of the family Omphalometridae and Echinostomatidae. PhD thesis, Institute of Parasitology, Czechoslovak Academy of Sciences, České Budějovice (in Czech).Google Scholar
Niewiadomska, K. (2002) Family Strigeidae Railliet, 1919. pp. 231241in Gibson, D.I., Jones, A. & Bray, R.A. (Eds) Keys to the Trematoda, Vol.1. London, CAB International and the Natural History Museum.CrossRefGoogle Scholar
Niewiadomska, K. (2003) Parasites of fish in Poland (identification keys). Flukes – Digenea. Monografie Parazytologiczne 15, 1169(in Polish).Google Scholar
Piesik, Z., Zieliński, R., Wachowiak-Zielińska, M., Ochman, T., Soroka, M. & Polok, K. (1998) Distribution, genetic structure and ecological role of Dreissena polymorpha (Pallas) in Lake Dębie, Western Pomerania, Poland. Baltic Coastal Zone 2, 2545.Google Scholar
Pojmańska, T. (1971) First record of Leucochloridiomorpha lutea (Baer, 1827) in Poland, and a critical review of representatives of the genus Leucochloridiomorpha Gower, 1938 (Trematoda, Brachylaimidae). Acta Parasitologica Polonica 19, 349355.Google Scholar
Pojmańska, T. (1972) Amblosoma exile g.n. sp.n. (Trematoda, Brachylaimidae, Leucochloridiomorphinae) – morphology of the adult and metacercaria. Acta Parasitologica Polonica 20, 3544.Google Scholar
Pojmańska, T. (2002) Family Leucochloridiomorphidae Yamaguti, 1958. pp. 5355in Gibson, D.I., Jones, A. & Bray, R.A. (Eds) Keys to the Trematoda, Vol.1. London, CAB International and the Natural History Museum.CrossRefGoogle Scholar
Pojmańska, T., Machalska, J. & Niewiadomska, K. (1984) Parasites of birds from the lake Gopło and heated lakes of the Konin Region. Acta Parasitologica Polonica 29, 277290.Google Scholar
Pojmańska, T., Niewiadomska, K. & Okulewicz, A. (2007) Pasożytnicze helminty Polski. Gatunki, żywiciele, białe plamy. 360 pp. Warsaw, Polskie Towarzystwo Parazytologiczne (in Polish).Google Scholar
Price, P.W. (1980) Evolutionary biology of parasites. 256 pp. Princeton, Princeton University Press.Google ScholarPubMed
Richner, H., Christe, P. & Opplinger, A. (1995) Paternal investment affects prevalence of malaria. Proceedings of the National Academy of Sciences, USA 92, 11921194.CrossRefGoogle ScholarPubMed
Saino, N., Møller, A.P. & Bolzern, A.M. (1995) Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): an experimental test of the immunocompetence hypothesis. Behaviour Ecology 6, 397404.CrossRefGoogle Scholar
Shaw, M.G. & Kocan, A.A. (1980) Helminth fauna of waterfowl in central Oklahoma. Journal of Wildlife Diseases 16, 5964.CrossRefGoogle ScholarPubMed
Silan, P. & Maillard, C. (1990) Comparative structures and dynamics of some populations of helminthes, parasites of fishes: the sea bass–Diplectanum model. Acta Oecologica 11, 857874.Google Scholar
Šimková, A., Sitko, J., Okulewicz, J. & Morad, S. (2003) Occurrence of intermediate hosts and structure of digenean communities of the black-headed gull. Larus ridibundus (L.). Parasitology 126, 6978.Google ScholarPubMed
Sitko, J. (1993) Ecological relations of Trematodes infesting Lariform birds in Czech Republic. Acta Scientarium Naturalium Brno 27, 198.Google Scholar
Sitko, J., Faltýnková, A. & Scholz, T. (2006) Checklist of the trematodes (Digenea) of birds of the Czech and Slovak Republics. 111 pp. Prague, Academia.Google Scholar
Skrjabin, K.I. (1928) Metod polnykh gelmintologicheskikh vskrytij pozvonochnykh vkluchaya cheloveka. Moscow, I Moskovskoy gosudarstvennoy universitet (in Russian).Google Scholar
Smogorzhevskaya, L.A. (1976) Helminths infecting waterfowl and wading birds in Ukraine. 416 pp. Kiev, Naukova Dumka (in Russian).Google Scholar
Stock, T.M. & Holmes, J.C. (1988) Functional relationships and microhabitat distributions of enteric helminthes of grebes (Podicipedidae): the evidence for interactive communities. Journal of Parasitology 74, 214227.CrossRefGoogle ScholarPubMed
Sulgostowska, T. (1958) Flukes of birds of Drużno Lake. Acta Parasitologica Polonica 6, 111142.Google Scholar
Sulgostowska, T. (1960a) Intestinal trematodes of birds of mesotrophic lakes: Gołdapiwo and Mamry Północne. Acta Parasitologica Polonica 8, 85114.Google Scholar
Sulgostowska, T. (1960b) Extra-intestinal trematodes of birds of mesotrophic lakes: Gołdapiwo and Mamry Północne. Acta Parasitologica Polonica 8, 471492.Google Scholar
Sulgostowska, T. (1963) Trematodes of birds in the biocenosis of the lakes Drużno, Gołdapiwo, Mamry Północne and Święcajty. Acta Parasitologica Polonica 11, 239246.Google Scholar
Sulgostowska, T. (1986) Helminth fauna of waterfowl from the Kostrzyń storage reservoir near Słońsk (Poland). Acta Parasitologica Polonica 31, 3345.Google Scholar
Sulgostowska, T. (2007) Intestinal digeneans of birds (superfamily Diplostomoidea) of the masurian lakes. Wiadomości Parazytologiczne 53, 117128.Google ScholarPubMed
Sulgostowska, T. & Czaplińska, D. (1987) Katalog Fauny Pasożytniczej Polski, Pasożyty ptaków. Pierwotniaki i przywry 4. 210 pp. Warsaw, PWN (in Polish).Google Scholar
Sulgostowska, T. & Korpaczewska, W. (1972) Helminth fauna of birds of two pond systems of the Milicz Ponds Reserve. Acta Parasitologica Polonica 20, 7594.Google Scholar
Tomiałojć, L. & Stawarczyk, T. (2003) Awifauna Polski. Rozmieszczenie, liczebność i zmiany, Vol. I. 439 pp. Wrocław, PTPP ‘pro Natura’ (in Polish).Google Scholar
Żuchowska, E. (1997) Helmintofauna Anseriformes (Aves) z Ogrodu Zoologicznego w Łodzi. Wiadomości Parazytologiczne 43, 213221(in Polish).Google Scholar