Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T09:35:11.842Z Has data issue: false hasContentIssue false

Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication

Published online by Cambridge University Press:  16 April 2012

CH. BONATTI
Affiliation:
Institut de Mathématiques de Bourgogne, BP 47 870, 1078 Dijon Cedex, France (email: bonatti@u-bourgogne.fr)
S. CROVISIER
Affiliation:
Institut Galilée, Université Paris 13, Avenue J.-B. Clément, 93430 Villetaneuse, France (email: crovisie@math.univ-paris13.fr)
L. J. DÍAZ
Affiliation:
Departamento de Matemática, PUC-Rio, Marquês de S. Vicente 225, 22453-900 Rio de Janeiro RJ, Brazil (email: lodiaz@mat.puc-rio.br)
N. GOURMELON
Affiliation:
Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la Libération, 33405 Talance Cedex, France (email: nicholas.gourmelon@math.u-bordeaux1.fr)

Abstract

Conditions are provided under which lack of domination of a homoclinic class yields robust heterodimensional cycles. Moreover, so-called viral homoclinic classes are studied. Viral classes have the property of generating copies of themselves producing wild dynamics (systems with infinitely many homoclinic classes with some persistence). Such wild dynamics also exhibits uncountably many aperiodic chain recurrence classes. A scenario (related with non-dominated dynamics) is presented where viral homoclinic classes occur. A key ingredient are adapted perturbations of a diffeomorphism along a periodic orbit. Such perturbations preserve certain homoclinic relations and prescribed dynamical properties of a homoclinic class.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abdenur, F.. Generic robustness of spectral decompositions. Ann. Sci. Éc. Norm. Supér. 36 (2003), 213224.Google Scholar
[2]Abdenur, F., Bonatti, Ch. and Crovisier, S.. Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms. Israel J. Math. 183 (2011), 120.CrossRefGoogle Scholar
[3]Abdenur, F., Bonatti, Ch., Crovisier, S., Díaz, L. J. and Wen, L.. Periodic points and homoclinic classes. Ergod. Th. & Dynam. Sys. 27 (2007), 122.Google Scholar
[4]Abraham, R. and Smale, S.. Nongenericity of $\Omega $-stability. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, CA, 1968). American Mathematical Society, Providence, RI, 1970, pp. 58.Google Scholar
[5]Asaoka, M.. Hyperbolic sets exhibiting $C\sp 1$-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 136 (2008), 677686.Google Scholar
[6]Bochi, J. and Bonatti, Ch.. Perturbation of the Lyapunov spectra of periodic orbits. Proc. Lond. Math. Soc. (3), to appear, arXiv:1004.5029.Google Scholar
[7]Bonatti, Ch.. Towards a global view of dynamical systems, for the $C^1$-topology. Ergod. Th. & Dynam. Sys. 31 (2011), 959993.CrossRefGoogle Scholar
[8]Bonatti, Ch. and Crovisier, S.. Récurrence et généricité. Invent. Math. 158 (2004), 33104.Google Scholar
[9]Bonatti, Ch. and Díaz, L. J.. Persistence of transitive diffeomorphisms. Ann. Math. 143 (1995), 367396.Google Scholar
[10]Bonatti, Ch. and Díaz, L. J.. On maximal transitive sets of generic diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 96 (2002), 171197.CrossRefGoogle Scholar
[11]Bonatti, Ch. and Díaz, L. J.. Robust heterodimensional cycles and $C^1$-generic dynamics. J. Inst. Math. Jussieu 7 (2008), 469525.Google Scholar
[12]Bonatti, Ch. and Díaz, L. J.. Abundance of $C^1$-robust homoclinic tangencies. Trans. Amer. Math. Soc. to appear, arXiv:0909.4062.Google Scholar
[13]Bonatti, Ch., Díaz, L. J. and Kiriki, S.. Robust heterodimensional cycles and hyperbolic continuations. Nonlinearity 25 (2012), 931969.Google Scholar
[14]Bonatti, Ch., Díaz, L. J. and Pujals, E. R.. A ${\mathcal C}^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. of Math. (2) 158 (2003), 355418.Google Scholar
[15]Bonatti, Ch., Díaz, L. J. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences: Mathematical Physics III, 102). Springer, 2004.Google Scholar
[16]Bonatti, Ch., Gourmelon, N. and Vivier, T.. Perturbations of the derivative along periodic orbits. Ergod. Th. & Dynam. Sys. 26 (2006), 13071337.Google Scholar
[17]Colli, E.. Infinitely many coexisting strange attractors. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 539579.Google Scholar
[18]Crovisier, S.. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems. Ann. Math. 172 (2010), 16411667.Google Scholar
[19]Crovisier, S. and Pujals, E. R.. Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms, arXiv:1011.3836.Google Scholar
[20]Díaz, L. J., Nogueira, A. and Pujals, E. R.. Heterodimensional tangencies. Nonlinearity 19 (2006), 25432566.Google Scholar
[21]Franks, J.. Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301308.Google Scholar
[22]Gan, S. and Wen, L.. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms. J. Dynam. Differential Equations 15 (2003), 451471.Google Scholar
[23]Gourmelon, N.. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete Contin. Dyn. Syst. 26 (2010), 142.Google Scholar
[24]Gourmelon, N.. A Franks’ lemma that preserves invariant manifolds, arXiv:0912.1121v2.Google Scholar
[25]Mañé, R.. Contributions to the stability conjecture. Topology 17 (1978), 383396.Google Scholar
[26]Moreira, C. G.. There are no $C^1$-stable intersections of regular Cantor sets. Acta Math. 206 (2011), 311323.Google Scholar
[27]Newhouse, S.. Diffeomorphisms with infinitely many sinks. Topology 13 (1974), 918.Google Scholar
[28]Newhouse, S.. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 101151.Google Scholar
[29]Newhouse, S.. New phenomena associated with homoclinic tangencies. Ergod. Th. & Dynam. Sys. 24 (2004), 17251738.CrossRefGoogle Scholar
[30]Pacifico, M. J., Pujals, E. R. and Vietez, J. L.. Robustly expansive homoclinic classes. Ergod. Th. & Dynam. Sys. 25 (2005), 271300.CrossRefGoogle Scholar
[31]Palis, J.. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque 261 (2000), 335347.Google Scholar
[32]Palis, J. and Takens, F.. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors (Cambridge Studies in Advanced Mathematics, 35). Cambridge University Press, Cambridge, 1993.Google Scholar
[33]Palis, J. and Viana, M.. High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. of Math. (2) 140 (1994), 207250.Google Scholar
[34]Pujals, E. R. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. 151 (2000), 9611023.CrossRefGoogle Scholar
[35]Romero, N.. Persistence of homoclinic tangencies in higher dimensions. Ergod. Th. & Dynam. Sys. 15 (1995), 735757.Google Scholar
[36]Shinohara, K.. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete Contin. Dyn. Syst. 31(3) (2011), 913940.Google Scholar
[37]Simon, C. P.. Instability in $\mathrm {Diff}(T^3)$ and the nongenericity of rational zeta functions. Trans. Amer. Math. Soc. 174 (1972), 217242.Google Scholar
[38]Wen, L.. Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles. Bull. Braz. Math. Soc. (N.S.) 35 (2004), 419452.Google Scholar