Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-27T09:50:48.247Z Has data issue: false hasContentIssue false

Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision

Published online by Cambridge University Press:  03 January 2013

GERALD H. JACOBS*
Affiliation:
Department of Psychological and Brain Sciences, University of California, Santa Barbara, California
*
*Address correspondence and reprint requests to: Gerald H. Jacobs, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106. E-mail: jacobs@psych.ucsb.edu

Abstract

All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnelt, P.K. & Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711770.CrossRefGoogle ScholarPubMed
Altimus, C.M., Guler, A.D., Alam, N.M., Arman, A.C., Prusky, G.T., Sampathl, A.P. & Hattar, S. (2010). Rod photoreceptors drive circadian entrainment across a wide range of light intensities. Nature Neuroscience 13, 11071112.CrossRefGoogle Scholar
Arnason, U., Gullberg, A., Janke, A., Kullberg, M., Lehman, N., Petrov, E.A. & Vainola, R. (2006). Pinniped phylogeny and a new hypothesis for their origin and dispersal. Molecular Phylogenetics and Evolution 41, 345354.CrossRefGoogle Scholar
Balakriev, E.S. & Ayala, F.J. (2003). Pseudogenes: Are they “junk” or functional DNA? Annual Review of Genetics 37, 123151.CrossRefGoogle Scholar
Baraas, R.C., Carroll, J., Gunther, K.L., Chung, M., Williams, D.R., Foster, D.H. & Neitz, M. (2007). Adaptive optics retinal imaging reveals S-cone dystrophy in tritan-color deficiency. Journal of the Optical Society of America A, Optics and Image Science 24, 14381446.CrossRefGoogle ScholarPubMed
Baraas, R.C., Hagen, L.A., Dees, E.W. & Neitz, M. (2012). Substitution of isoleucine for threonine at position 190 of S-cone opsin causes S-cone-function abnormalities. Vision Research 73, 19.CrossRefGoogle ScholarPubMed
Bearder, S.K., Nekaris, K.A.J. & Curtis, D.J. (2006). A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatologica 77, 5071.CrossRefGoogle ScholarPubMed
Bickelmann, C. (2011). Visual pigment evolution and the paleobiology of early mammals. Doctoral Thesis, Humboldt-Universitat zu Berline, Berlin.Google Scholar
Bornemann, H., Mohr, E., Plotz, J. & Krause, G. (1998). The tide as zeitgeber for Weddell seals. Polar Biology 20, 396403.CrossRefGoogle Scholar
Buck, S.L. (2004). Rod-cone interactions in human vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 863878. Cambridge, MA: MIT Press.Google Scholar
Calderone, J.B. & Jacobs, G.H. (1999). Cone receptor variations and their functional consequences in two species of hamster. Visual Neuroscience 16, 5363.CrossRefGoogle ScholarPubMed
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.CrossRefGoogle ScholarPubMed
Carroll, J., Baraas, R.C., Wagner-Schuman, M., Rha, J., Siebe, C.A., Sloan, C., Tait, D.M., Thompson, S., Morgan, J.I.W., Neitz, J., Williams, D.R., Foster, D.H. & Neitz, M. (2009). Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in M-cone opsin. Proceedings of the National Academy of Sciences of the United States of America 106, 2094820953.CrossRefGoogle ScholarPubMed
Carroll, J., Neitz, M., Hofer, H., Neitz, J. & Williams, D.R. (2004). Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. Proceedings of the National Academy of Sciences of the United States of America 101, 84618466.CrossRefGoogle ScholarPubMed
Carvalho, L.S., Cowing, J.A., Wilkie, S.E., Bowmaker, J.K. & Hunt, D.M. (2006). Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology 16, R81R83.CrossRefGoogle ScholarPubMed
Carvalho, L.S., Davies, W.L., Robinson, F.R. & Hunt, D.M. (2012). Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society of London. Series B, Biological Sciences 279, 387393.Google ScholarPubMed
Charles-Dominique, P. (1971). Ecology and Behaviour of Nocturnal Primates. New York: Columbia University Press.Google Scholar
Collin, S.P., Davies, W.L., Hart, N.S. & Hunt, D.M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 29252940.CrossRefGoogle ScholarPubMed
Cooper, H.M., Herbin, M. & Nevo, E. (1993). Visual system of a naturally micropthalmic mammal: The blind mole rat, Spalax ehrenbergei. The Journal of Comparative Neurology 328, 313350.CrossRefGoogle Scholar
Cowing, J.A., Arrese, C.A., Davies, W.L., Beazley, L.D. & Hunt, D.M. (2008). Cone visual pigments in two marsupial species: The fat-tailed dunnart (Sminthopsis crassicaudatus) and the honey possum (Tarsipes rostratus). Proceedings of the Royal Society of London. Series B, Biological Sciences 275, 14911499.Google Scholar
Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Robinson, P.R., Bowmaker, J.K. & Hunt, D.M. (2002). The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. The Biochemical Journal 367, 129135.CrossRefGoogle ScholarPubMed
Crompton, A.W., Taylor, C.R. & Jagger, J.A. (1978). Evolution of homeothermy in mammals. Nature 272, 333336.CrossRefGoogle ScholarPubMed
Curtis, D.J. & Rasmussen, M.A. (2006). The evolution of cathemerality in primates and other mammals: A comparative and chronobiological approach. Folia Primatologica 77, 178193.CrossRefGoogle Scholar
Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.CrossRefGoogle Scholar
David-Gray, Z.K., Bellingham, J., Munoz, M., Avivi, A., Nevo, E. & Foster, R.G. (2002). Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). The European Journal of Neuroscience 15, 11861194.CrossRefGoogle Scholar
David-Gray, Z.K., Janssen, J.W., DeGrip, W.J., Nevo, E. & Foster, R.G. (1998). Light detection in a “blind” mammal. Nature Neuroscience 1, 655656.CrossRefGoogle Scholar
Davies, W.L., Caravalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M. & Arrese, C.A. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology 17, B161B163.CrossRefGoogle ScholarPubMed
Deegan, J.F. II & Jacobs, G.H. (1996). Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus). American Journal of Primatology 40, 5566.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Demuth, J.P. & Hahn, M.W. (2009). The life and death of gene families. BioEssays 31, 2939.CrossRefGoogle ScholarPubMed
Dkhissi-Benyahya, O., Gronfier, C., De Vanssay, W., Flamant, F. & Cooper, H.M. (2007). Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53, 677687.CrossRefGoogle ScholarPubMed
Dollet, A., Albrecht, U., Cooper, H.M. & Dkhissi-Benyahya, O. (2010). Cones are required for normal temporal responses to light of phase shifts and clock gene expression. Chronobiology International 27, 768781.CrossRefGoogle ScholarPubMed
Eisner, A., & MacLeod, D.I. (1980). Short wavelength cones do not contribute to luminance. Journal of the Optical Society of America 70, 121123.CrossRefGoogle Scholar
Erkert, H.G., Fernandez-Duque, E., Rotundo, M. & Scheideler, A. (2012). Seasonal variation of temporal niche in wild Owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: A matter of masking? Chronobiology International 29, 702714.CrossRefGoogle ScholarPubMed
Fasick, J.I., Cronin, T.W., Hunt, D.M. & Robinson, P.R. (1998). The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neuroscience 15, 643651.CrossRefGoogle ScholarPubMed
Feller, K.D., Lagerholm, S., Clubwala, R., Silver, M.T., Haughey, D., Ryan, J.M., Loew, E.R., Deutschlander, M.E. & Kenyon, K.L. (2009). Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae). Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 154, 4l12418.CrossRefGoogle ScholarPubMed
Fernandez-Duque, E. (2003). Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azari). Behavioral Ecology and Sociobiology 54, 431440.CrossRefGoogle Scholar
Fernandez-Duque, E. & Erkert, H.G. (2006). Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinean Chaco. Folia Primatologica 77, 123138.CrossRefGoogle Scholar
Fernandez-Duque, E., Iglesia, H.D.L. & Erkert, H.G. (2010). Moonstruck primates: Owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLoS One 5, e12572.CrossRefGoogle ScholarPubMed
Fujun, X., Kailang, H., Tengteng, Z., Paul, R., Xuzhong, W. & Yi, S. (2012). Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologica 29, 109114.Google Scholar
Geng, Y., Dubra, A., Yin, L., Merigan, W.H., Sharma, R., Libby, R.T. & Williams, D.R. (2012). Adaptive optics retinal imaging in the living mouse eye. Biomedical Optics Express 3, 715734.CrossRefGoogle ScholarPubMed
Gilad, Y., Bustamante, C.D., Lancet, D. & Paaba, S. (2003). Natural selection on the olfactory receptor gene family in humans and chimpanzees. American Journal of Human Genetics 73, 489501.CrossRefGoogle ScholarPubMed
Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D. & Paabo, S. (2004). Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology 2, 16.CrossRefGoogle ScholarPubMed
Glossmann, M., Peichl, L., Neumann, K. & Gattermann, R. (2006). Lack of a functional shortwave-sensitive cone opsin is a species trait in the golden hamster. Investigative Ophthalmology and Visual Science 47, E-Abstract2838, 1.Google Scholar
Go, Y., Satta, Y., Takenaka, O. & Takahata, N. (2005). Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 176, 313326.CrossRefGoogle Scholar
Griebel, U. & Peichl, L. (2003). Colour vision in aquatic mammals—Facts and open questions. Aquatic Mammals 29.1, 1830.CrossRefGoogle Scholar
Griebel, U. & Schmid, A. (1992). Color vision in the California sea lion (Zalophus californianus). Vision Research 32, 477482.CrossRefGoogle ScholarPubMed
Gunther, K.L., Neitz, J. & Neitz, M. (2006). A novel mutation in the short-wavelength-sensitive cone pigment associated with a tritan color vision defect. Visual Neuroscience 23, 403409.CrossRefGoogle ScholarPubMed
Harkonen, T., Jussi, M., Jussi, I., Vereykin, M., Dmitrieva, L., Helle, E., Sagnitov, R. & Harding, K.C. (2008). Seasonal activity budget of adult Baltic ringed seals. PLoS One 3, e2006.CrossRefGoogle ScholarPubMed
Haverkamp, S., Wassle, H.Dubel, J., Kumer, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience 25, 54385445.CrossRefGoogle ScholarPubMed
Heesy, C.P. & Hall, M.I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain, Behavior and Evolution 75, 195203.CrossRefGoogle ScholarPubMed
Hunt, D.M., Carvallo, L.S., Cowing, J.A. & Davies, W.L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 29412955.CrossRefGoogle ScholarPubMed
Hunt, D.M., Wilkie, S.E., Bowmaker, J.K. & Poopalasundaram, S. (2001). Vision in the ultraviolet. Cellular and Molecular Life Sciences 58, 15831598.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1977). Visual capacities of the owl monkey (Aotus trivirgatus): II. Spatial contrast sensitivity. Vision Research 17, 821825.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience 25, 619633.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 29572967.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (2010). Recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics 30, 422434.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Deegan, J.F. II (1992). Cone photopigments in nocturnal and diurnal procyonids. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 171, 351358.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Deegan, J.F. II (2002). Photopigment polymorphism in prosimians and the origins of primate trichromacy. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 1420. Oxford, UK: Oxford University Press.Google Scholar
Jacobs, G.H. & Deegan, J.F. II (2003). Diurnality and cone pigment polymorphism in strepsirrhines: Examination of the linkage in Lemur catta. American Journal of Physical Anthropology 122, 6672.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Deegan, J.F. II, Neitz, J.A., Crognale, M.A. & Neitz, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research 33, 17731783.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Fenwick, J.A. & Williams, G.A. (2001). Cone-based vision of rats for ultraviolet and visible lights. The Journal of Experimental Biology 204, 24392446.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Neitz, M. & Neitz, J. (1996). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London. Series B, Biological Sciences 263, 705710.Google ScholarPubMed
Jacobs, G.H. & Rowe, M.P. (2004). Evolution of vertebrate colour vision. Clinical and Experimental Optometry 87, 206216.CrossRefGoogle ScholarPubMed
Jacq, C., Miller, J. & Brownlee, G. (1977). Pseudogene structure in 5S-DNA of Xenopus laevis. Cell 12, 109120.CrossRefGoogle ScholarPubMed
Kachane, A.N. & Harrison, P.M. (2009). Assessing the genomic evidence for conserved transcribed pseudogenes under selection. BMC Genomics 10, 435.CrossRefGoogle Scholar
Kacher-Cobb, J., Bialozynski, C., Neitz, J., Jacobs, G.H. & Neitz, N. (1999). UV cone pigment genes from Syrian and Siberian hamsters. Investigative Ophthalmology and Visual Science 40, S353.Google Scholar
Kalmus, H. (1955). The familial distribution of congenital tritanopia, with some remarks on some similar conditions. Annals of Human Genetics 20, 3956.CrossRefGoogle ScholarPubMed
Kawamura, S. & Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution 58, 314321.CrossRefGoogle ScholarPubMed
Kemp, T.S. (2005). The Origin and Evolution of Mammals. Oxford, UK: Oxford University Press.Google Scholar
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.CrossRefGoogle ScholarPubMed
Kurtenbach, A., Meierkord, S. & Kremers, J. (1999). Spectral sensitivities in dichromats and trichromats at mesopic retinal illuminance. Journal of the Optical Society of America A 16, 15411548.CrossRefGoogle Scholar
Levenson, D.H. & Dizon, A. (2003). Genetic evidence for the ancestral loss of SWS cone pigments in mysticete and odontocete cetaceans. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 673679.CrossRefGoogle ScholarPubMed
Levenson, D.H., Fernandez-Duque, E., Evans, S. & Jacobs, G.H. (2007). Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. American Journal of Primatology 69, 757765.CrossRefGoogle ScholarPubMed
Levenson, D.H., Ponganis, P.J., Crognale, M.A., Deegan, J.F. II, Dizon, A. & Jacobs, G.H. (2006). Visual pigments of marine carnivores: Pinnipeds, polar bear, and sea otter. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 192, 833843.CrossRefGoogle ScholarPubMed
Lukats, A., Szabo, A., Rohlich, P., Vigh, B. & Szel, A. (2005). Photopigment coexpression in mammals: Comparative and developmental aspects. Histology and Histopathology 20, 551574.Google ScholarPubMed
Marc, R.E. & Jones, B.W. (2003). Retinal remodeling in inherited photoreceptor degenerations. Molecular Neurobiology 28, 139147.CrossRefGoogle ScholarPubMed
Martin, R.D. & Ross, C.F. (2005). The evolutionary and ecological context of primate vision. In The Primate Visual System: A Comparative Approach, ed. Kremers, J.West Sussex, UK: John Wiley & Sons, Ltd.Google Scholar
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.CrossRefGoogle ScholarPubMed
Melin, A.D., Moritz, G.L., Fosbury, R.A.E., Kawamura, S. & Dominy, N.J. (2012). Why aye-ayes see blue. American Journal of Primatology 74, 185192.CrossRefGoogle ScholarPubMed
Menezes, A.N., Bonvicino, C.R. & Seuanez, H.N. (2010). Identification, classification and evolution of Owl Monkeys (Aotus, Illiger 1811). BMC Evolutionary Biology 10, 248.CrossRefGoogle ScholarPubMed
Moore-Ede, M., Salzman, F. & Fuller, C. (1983). The Clocks That Time Us. Cambridge, MA: Harvard University Press.Google Scholar
Muller, B., Goodman, S.M. & Peichl, L. (2007). Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain, Behavior and Evolution 70, 90104.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, J. & Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research 51, 633651.CrossRefGoogle ScholarPubMed
Niven, J.E. & Laughlin, S.B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. The Journal of Experimental Biology 211, 17921804.CrossRefGoogle ScholarPubMed
Parga, J.A. (2011). Nocturnal ranging by a diurnal primate: Are ring-tailed lemurs (Lemur catta) cathemeral? Primates 52, 201205.CrossRefGoogle ScholarPubMed
Pauers, M.J., Kuchenbecker, J.A., Neitz, M. & Neitz, J. (2012). Changes in the colour of light cue circadian activity. Animal Behaviour 83, 11431151.CrossRefGoogle ScholarPubMed
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 287A, 10011012.CrossRefGoogle Scholar
Peichl, L., Behrmann, G. & Kroger, R.H.H. (2001). For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. The European Journal of Neuroscience 13, 15201528.CrossRefGoogle ScholarPubMed
Peichl, L. & Moutairou, K. (1998). Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). The European Journal of Neuroscience 10, 25862594.Google ScholarPubMed
Peichl, L. & Pohl, B. (2000). Cone types and cone/rod ratios in the crab-eating raccoon and coati (Procyonidae). Investigative Ophthalmology and Visual Science 41, S494.Google Scholar
Perry, G.H., Martin, R.D. & Verrelli, B.C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution 24, 19631970.CrossRefGoogle Scholar
Podlaha, O. & Zhang, J. (2010). Pseudogenes and their evolution. In Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons. doi: 10.1002/9780470015902.a0005118.pub2, 1–8.Google Scholar
Provencio, I., Rodriquez, L., Jiang, G., Hayes, W., Moreira, E. & Rollag, M. (2000). A novel human opsin in the inner retina. The Journal of Neuroscience 20, 600605.CrossRefGoogle ScholarPubMed
Ripamonti, C., Woo, W.L., Crowther, E. & Stockman, A. (2009). The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: Silent surrounds? Journal of Vision 9, 118.CrossRefGoogle Scholar
Saayman, G.S., Tayler, C.K. & Bower, D. (1973). Diurnal activity cycles in captive and free-ranging Indian ocean bottlenose dolphins (Tursiops aduncus Ehrenburg). Behaviour 44, 212233.CrossRefGoogle Scholar
Schmitz, L. & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705708.CrossRefGoogle ScholarPubMed
Sher, A. & DeVries, S.H. (2012). A non-canonical pathways for mammalian blue-green color vision. Nature Neuroscience 15, 952953.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Saito, C.A., Lee, B.B., Kremers, J., Filho, M.S., Kilavik, B.E., Yamada, E.S. & Perry, V.H. (2004). Morphology and physiology of primate M- and P-cells. In The Roots of Visual Awareness, ed. Heywood, C.A., Milner, A.D. & Blakemore, C., pp. 2146. Amsterdam, The Netherlands: Elsevier.Google Scholar
Silver, P.H. (1966). Spectral sensitivity of a trained bush baby. Vision Research 6, 153162.CrossRefGoogle ScholarPubMed
Smale, L., Lee, T. & Nunez, A.A. (2003). Mammalian diurnality: Some facts and gaps. Journal of Biological Rhythms 18,356366.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (1977). Large-field trichromacy in protanopes and deuteranopes. Journal of the Optical Society of America 67, 213220.CrossRefGoogle ScholarPubMed
Soldevillia, M.S., Wiggins, S.M. & Hildebrand, J.A. (2010). Spatial and temporal patterns of Risso’s dolphin echolocation in the Southern California bight. The Journal of the Acoustical Society of America 127, 124132.CrossRefGoogle Scholar
Solomon, S.G. & Lennie, P. (2007). The machinery of colour vision. Nature Neuroscience. Reviews 8, 276286.CrossRefGoogle ScholarPubMed
Strachan, J., Chang, L.-Y., Wakefield, E., Marshall, M.J., Graves, J.A. & Deeb, S.S. (2004). Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: Sequence and inferred spectral properties. Visual Neuroscience 21, 223229.CrossRefGoogle ScholarPubMed
Striedter, G.F. (2005). Principles of Brain Evolution. Sutherland, UK: Sinauer.Google Scholar
Szel, A., Csorba, G., Caffe, A.R., Szel, G., Rohlich, P., & van Veen, T. (1994). Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus. Cell and Tissue Research 276, 143150.CrossRefGoogle ScholarPubMed
Szel, A., Lukats, A., Fekete, T., Szepessy, Z. & Rohlich, P. (2000). Photoreceptor distribution in the retinas of subprimate mammals. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 17, 568579.CrossRefGoogle ScholarPubMed
Tan, Y. & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature 402, 36.CrossRefGoogle ScholarPubMed
Tan, Y., Yoder, A.D., Yamashita, N. & Li, W.H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences of the United States of America 102, 1471214716.CrossRefGoogle ScholarPubMed
Tattersal, I. (1987). Cathemeral activity in primates: A definition. Folia Primatologica 49, 200202.CrossRefGoogle Scholar
Teeling, M.C., Springer, M.S., Madsen, O., Bates, P., O’Brien, S.J. & Murphy, W.J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580584.CrossRefGoogle ScholarPubMed
van Norren, D. & Went, L.N. (1981). New test for the detection of tritan defects evaluated in two surveys. Vision Research 21, 13031306.CrossRefGoogle ScholarPubMed
Veilleux, C.C. (2012). Effects of light environment on the evolution of primate visual systems. Ph.D. dissertation, Anthropology Department, University of Texas, Austin.Google Scholar
Veilleux, C.C. & Bolnick, D.A. (2009). Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. American Journal of Primatology 71, 8690.CrossRefGoogle Scholar
von Schantz, M., Argamaso-Hernan, S.M., Szel, A. & Foster, R.G. (1997). Photopigments and photoentrainment in the Syrian golden hamster. Brain Research 770, 131138.CrossRefGoogle ScholarPubMed
Wagner-Schuman, M., Neitz, J., Rha, J., Williams, D.R., Neitz, M. & Carroll, J. (2010). Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions. Vision Research 50, 23962402.CrossRefGoogle ScholarPubMed
Wakefield, M.J., Anderson, M., Chang, E., Wei, K.J., Kaul, R., Graves, J.A., Grutzner, F. & Deeb, S.S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience 25, 257264.CrossRefGoogle ScholarPubMed
Wang, X., Grus, W.E. & Zhang, J. (2006). Gene losses during human origins. PLoS Biology 4, e52.CrossRefGoogle ScholarPubMed
Wang, D., Oakley, T., Mower, J., Shimmin, L.C., Yim, S., Honeycutt, R.L., Tsao, H. & Li, W.H. (2004). Molecular evolution of bat color vision genes. Molecular Biology and Evolution 21, 295302.CrossRefGoogle ScholarPubMed
Wassle, H. (2004). Parallel processing in the mammalian retina. Nature Neuroscience 19, 747757.CrossRefGoogle Scholar
Watts, P. (1993). Possible lunar influence on hauling out behavior by the pacific harbour seal (Phoca vitulina richardsi). Marine Mammal Science 9, 6876.CrossRefGoogle Scholar
Weitz, C.J., Miyake, Y., Shinzato, K., Montag, E., Zrenner, E., Went, L.N. & Nathans, J. (1992a). Human tritanopia associated with two amino acid substitutions in the blue sensitive opsin. American Journal of Human Genetics 50, 498507.Google ScholarPubMed
Weitz, C.J., Went, L.N. & Nathans, J. (1992b). Human tritanopia associated with third amino acid substitution in the blue sensitive visual pigment. American Journal of Human Genetics 51, 444446.Google ScholarPubMed
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. The Journal of Neuroscience 10, 33903401.CrossRefGoogle ScholarPubMed
Williams, D.R. (2011). Imaging single cells in the living retina. Vision Research 51, 13791396.CrossRefGoogle ScholarPubMed
Williams, G.A., Calderone, J.B. & Jacobs, G.H. (2005). Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191, 125134.CrossRefGoogle Scholar
Williams, D.R., Collier, R.J. & Thompson, B.J. (1983). Spatial resolution of the short-wavelength mechanism. In Color Vision—Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 487503. London: Academic Press.Google Scholar
Williams, G.A. & Jacobs, G.H. (2008). Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 194, 429439.CrossRefGoogle ScholarPubMed
Wright, W.D. (1952). The characteristics of tritanopia. Journal of the Optical Society of America 42, 509520.CrossRefGoogle ScholarPubMed
Wright, P.C. (1989). The nocturnal monkey niche in the New World. Journal of Human Ecology 18, 635658.Google Scholar
Xuan, F., Hu, K., Zhu, T., Racey, P., Wang, X., Zhang, S. & Sun, Y. (2012). Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 161, 398403.CrossRefGoogle ScholarPubMed
Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual review of Genomics and Human Genetics 9, 259282.CrossRefGoogle ScholarPubMed
Zhang, J. & Webb, D.M. (2003). Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proceedings of the National Academy of Sciences of the United States of America 100, 83378341.CrossRefGoogle ScholarPubMed
Zhao, H., Rossiter, S.J., Teeling, E.C., Li, C., Cotton, J.A. & Zhang, S. (2009). The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the United States of America 106, 89808985.CrossRefGoogle ScholarPubMed