Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T05:42:36.086Z Has data issue: false hasContentIssue false

Concentrated Solutions of Highly Conductive Pyrene-Functionalized Carbon Nanotubes Suitable for Printing

Published online by Cambridge University Press:  10 April 2013

Christopher William Landorf
Affiliation:
Printed Electronics Technology Center, Brewer Science, Inc., Springfield, MO, United States.
James Lamb
Affiliation:
Printed Electronics Technology Center, Brewer Science, Inc., Springfield, MO, United States.
Wu-Sheng Shih
Affiliation:
CNT Research, Brewer Science, Inc., Springfield, MO, United States.
Vijaya Kayastha
Affiliation:
Printed Electronics Technology Center, Brewer Science, Inc., Springfield, MO, United States.
John Bledsoe
Affiliation:
Printed Electronics Technology Center, Brewer Science, Inc., Springfield, MO, United States.
Jacqueline Garrison
Affiliation:
Printed Electronics Technology Center, Brewer Science, Inc., Springfield, MO, United States.
Marriana Nelson
Affiliation:
CNT Research, Brewer Science, Inc., Springfield, MO, United States.
Get access

Abstract

As produced, raw carbon nanotubes are not soluble in many solvents necessary for printing applications. Standard methods for circumventing this problem involve sidewall functionalization and surfactants. Sidewall functionalization invariably destroys the π-network that gives carbon nanotubes their useful electronic properties, while surfactants deposit an insulating layer onto the carbon nanotube surface that must be washed off to regain the desired properties. Non-covalent functionalization offers the possibility to achieve solubility without destroying the π-network, but published methods have resulted in relatively low concentrations or substandard electronic performance. We have developed a scalable method to non-covalently functionalize long (> 3 μm) carbon nanotubes with simple pyrene derivatives. This method produces highly dispersed solutions with concentrations as high as 2.5 g/l that can be used to produce conductive coatings with sheet resistance as low as 350 Ω/sq with 85% transmittance at 550 nm without post-deposition washing or doping treatments. The functionalized carbon nanotubes can be formulated into solutions that can be printed by ink-jet deposition, Aerosol-Jet® deposition, screen printing, and spray coating for printed electronics fabrication, and the solutions are stable for months without signs of bundling.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chem. Rev. 106, 11051136 (2006)CrossRefGoogle Scholar
Tasis, D., Tagmatarchis, N., Georgakilas, V., and Prato, M., Chem. Eur. J. 9, 40004008 (2003)CrossRefGoogle Scholar
Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., and Rinzler, A. G., Science 305, 12731276 (2004)CrossRefGoogle Scholar
Wang, J., Sun, J., Gao, L., Wang, Y., Zhang, J., Kajiura, H., Li, Y., and Noda, K. J. Phys. Chem. C, 113, 1768517690 (2009)CrossRefGoogle Scholar
O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D., and Smalley, R. E. Chem. Phys. Lett. 342, 265271 (2001)CrossRefGoogle Scholar
Tchoul, M. N., Ford, W. T., Lolli, L. G., Resasco, D. E., and Arepalli, S., Chem. Mater. 19, 57655772 (2007)CrossRefGoogle Scholar
Dyke, C. A., Tour, J. M., Chem. Eur. J. 10, 812817 (2004)CrossRefGoogle Scholar
Banerjee, S., Hemraj-Benny, T., and Wong, S. S., Adv. Mater. 17, 1729 (2005)CrossRefGoogle Scholar
Dettlaff-Weglikowska, U., Skákalová, V., Graupner, R., Jhang, S. H., Kim, B. H., Lee, H. J., Ley, L., Park, Y. W., Berber, S., Tománek, D., and Roth, S., J. Am. Chem. Soc. 127, 51255131 (2005)CrossRefGoogle Scholar
Skákalová, V., Kaiser, A. B., Dettlaff-Weglikowska, U., Hrncariková, K., and Roth, S.. J. Phys. Chem. B 109, 71747181 (2005)CrossRefGoogle Scholar
Tomonari, Y., Murakami, H., and Nakashima, N., Chem. Eur. J. 12, 40274034 (2006)CrossRefGoogle Scholar
Nakashima, N., Tomonari, Y., and Murakamiy, H., Chem. Lett. 12, 638639 (2002)CrossRefGoogle Scholar
Davis, V. A., Ericson, L. M., Parra-Vasquez, A. N. G., Fan, H., Wang, Y., Prieto, V., Longoria, J. A., Ramesh, S., Saini, R. K., Kittrell, C., Billups, W. E., Adams, W. W., Hauge, R. H., Smalley, R. E., Pasquali, M., Macromolecules 37, 54160 (2004)Google Scholar
Parra-Vasquez, A. N. G., Behabtu, N., Green, M. J., Pint, C. L., Young, C. C., Schmidt, J., Kesselman, E., Goyal, A., Ajayan, P. M., Cohen, Y., Talmon, Y., Hauge, R. H., and Pasquali, M., ACS Nano 4, 39693978 (2010)CrossRefGoogle Scholar
Dyke, C. A., and Tour, J. M., Chem. Eur. J. 10, 812817 (2004)CrossRefGoogle Scholar
Landorf, C., U.S. Patent Application No. 20120326093 A1, published December 27, 2012.Google Scholar