Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T05:07:52.631Z Has data issue: false hasContentIssue false

Atomistic-to-continuum coupling

Published online by Cambridge University Press:  02 April 2013

Mitchell Luskin
Affiliation:
School of Mathematics, University of Minnesota, MN 55455, USA E-mail: luskin@umn.edu
Christoph Ortner
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK E-mail: c.ortner@warwick.ac.uk

Abstract

Atomistic-to-continuum (a/c) coupling methods are a class of computational multiscale schemes that combine the accuracy of atomistic models with the efficiency of continuum elasticity. They are increasingly being utilized in materials science to study the fundamental mechanisms of material failure such as crack propagation and plasticity, which are governed by the interaction between crystal defects and long-range elastic fields.

In the construction of a/c coupling methods, various approximation errors are committed. A rigorous numerical analysis approach that classifies and quantifies these errors can give confidence in the simulation results, as well as enable optimization of the numerical methods for accuracy and computational cost. In this article, we present such a numerical analysis framework, which is inspired by recent research activity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Admal, N. C. and Tadmor, E. B. (2010), ‘A unified interpretation of stress in molecular systems’, J. Elasticity 100, 63143.CrossRefGoogle Scholar
Anitescu, M., Negrut, D., Zapol, P. and El-Azab, A. (2009), ‘A note on the regularity of reduced models obtained by nonlocal quasi-continuum-like approaches’, Math. Program. Ser. A 118, 207236.CrossRefGoogle Scholar
Arndt, M. and Luskin, M. (2007), ‘Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation’, Internat. J. Multiscale Comput. Engng 5, 407415.CrossRefGoogle Scholar
Arndt, M. and Luskin, M. (2008 a), ‘Error estimation and atomistic-continuum adap-tivity for the quasicontinuum approximation of a Frenkel-Kontorova model’, SIAM J. Multiscale Model. Simul. 7, 147170.CrossRefGoogle Scholar
Arndt, M. and Luskin, M. (2008 b), ‘Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model’, Comput. Methods Appl. Mech. Engng 197, 42984306.CrossRefGoogle Scholar
Arnold, D. N. and Falk, R. S. (1989), ‘A uniformly accurate finite element method for the Reissner-Mindlin plate’, SIAM J. Numer. Anal. 26, 12761290.CrossRefGoogle Scholar
Badia, S., Bochev, P., Lehoucq, R., Parks, M. L., Fish, J., Nuggehally, M. and Gunzburger, M. (2007), ‘A force-based blending model for atomistic-to-continuum coupling’, Internat. J. Multiscale Comput. Engng 5, 387406.CrossRefGoogle Scholar
Badia, S., Parks, M., Bochev, P., Gunzburger, M. and Lehoucq, R. (2008), ‘On atomistic-to-continuum coupling by blending’, Multiscale Model. Simul. 7, 381406.CrossRefGoogle Scholar
Baskes, M. I., Melius, C. F. and Wilson, W. D. (1981), Solubility and diffusivity of hydrogen and helium at dislocations and in the stress-field near a crack tip. In Hydrogen Effects in Metals (Bernstein, I. M. and Thompson, A. W., eds), TMS-AIME, pp. 6775.Google Scholar
Bauman, P. T., Dhia, H. Ben, Elkhodja, N., Oden, J. T. and Prudhomme, S. (2008), ‘On the application of the Arlequin method to the coupling of particle and continuum models’, Comput. Mech. 42, 511530.CrossRefGoogle Scholar
Belytschko, T. and Xiao, S. P. (2003), ‘Coupling methods for continuum model with molecular model’, Internat. J. Multiscale Comput. Engng 1, 115126.Google Scholar
Blanc, X. and Legoll, F. (2013), ‘A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The membrane case’, Comput. Mater. Sci. 66, 8495.CrossRefGoogle Scholar
Blanc, X., Le Bris, C. and Legoll, F. (2005), ‘Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics’, M2AN: Math. Model. Numer. Anal. 39, 797826.CrossRefGoogle Scholar
Blanc, X., Le Bris, C. and Lions, P.-L. (2002), ‘From molecular models to continuum mechanics’, Arch. Ration. Mech. Anal. 164, 341381.CrossRefGoogle Scholar
Blanc, X., Le Bris, C., Legoll, F. and Patz, C. (2010), ‘Finite-temperature coarsegraining of one-dimensional models: Mathematical analysis and computational approaches’, J. Nonlinear Sci. 20, 241275.CrossRefGoogle Scholar
Born, M. and Huang, K. (1954), Dynamical Theory of Crystal Lattices, Oxford University Press.Google Scholar
Cauchy, A.-L. (1882), De la pression ou tension dans un système de points matériels. In Oeuvres complétes d'Augustin Cauchy, Vol. 2e Sèrie, tome VIII, Gauthier-Villars, pp. 253277. First published in 1828.Google Scholar
Curtin, W. A. and Miller, R. M. (2003), ‘Atomistic/continuum coupling in computational materials science’, Model. Simul. Mater. Sci. 11, R33R68.CrossRefGoogle Scholar
Daw, M. S. and Baskes, M. I. (1984), ‘Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals’, Phys. Rev. B 20, 64436453.CrossRefGoogle Scholar
Dobson, M. (2011), There is no pointwise consistent quasicontinuum energy. arXiv:1109.1897Google Scholar
Dobson, M. and Luskin, M. (2008 a), ‘Analysis of a force-based quasicontinuum approximation’, Math. Model. Numer. Anal. 42, 113139.CrossRefGoogle Scholar
Dobson, M. and Luskin, M. (2008 b), ‘Iterative solution of the quasicontinuum equilibrium equations with continuation’, J. Sci. Comput. 37, 1941.CrossRefGoogle Scholar
Dobson, M. and Luskin, M. (2009 a), ‘An analysis of the effect of ghost force oscillation on quasicontinuum error’, Math. Model. Numer. Anal. 43, 591604.CrossRefGoogle Scholar
Dobson, M. and Luskin, M. (2009 b), ‘An optimal order error analysis of the one-dimensional quasicontinuum approximation’, SIAM. J. Numer. Anal. 47, 24552475.CrossRefGoogle Scholar
Dobson, M., Luskin, M. and Ortner, C. (2010 a), ‘Accuracy of quasicontinuum approximations near instabilities’, J. Mech. Phys. Solids 58, 17411757.CrossRefGoogle Scholar
Dobson, M., Luskin, M. and Ortner, C. (2010 b), ‘Stability, instability, and error of the force-based quasicontinuum approximation’, Arch. Ration. Mech. Anal. 197, 179202.CrossRefGoogle Scholar
Dobson, M., Luskin, M. and Ortner, C. (2011), ‘Iterative methods for the force-based quasicontinuum approximation: Analysis of a 1D model problem’, Comput. Methods Appl. Mech. Engng 200, 26972709.CrossRefGoogle Scholar
Dobson, M., Ortner, C. and Shapeev, A. V. (2012), ‘The spectrum of the force-based quasicontinuum operator for a homogeneous periodic chain’, Multiscale Model. Simul. 10, 744765.CrossRefGoogle Scholar
Du, Q., Gunzburger, M., Lehoucq, R. and Zhou, K. (2013), ‘Analysis of the volume-constrained peridynamic Navier equation of linear elasticity’, J. Elasticity, to appear.CrossRefGoogle Scholar
Dupuy, L. M., Tadmor, E. B., Miller, R. E. and Phillips, R. (2005), ‘Finite temperature quasicontinuum: Molecular dynamics without all the atoms’, Phys. Rev. Lett. 95, 060202.CrossRefGoogle ScholarPubMed
W. E, (2011), Principles ofMultiscale Modeling, Cambridge University Press.Google Scholar
W. E, and Lu, J. (2013), ‘The Kohn–Sham equation for deformed crystals’, Mem. Amer. Math. Soc. 221, to appear.Google Scholar
W. E, and Ming, P. (2007), ‘Cauchy-Born rule and the stability of crystalline solids: Static problems’, Arch. Ration. Mech. Anal. 183, 241297.Google Scholar
W. E, , Lu, J. and Yang, J. Z. (2006), ‘Uniform accuracy of the quasicontinuum method’, Phys. Rev. B 74, 214115.Google Scholar
Eidel, B. and Stukowski, A. (2009), ‘A variational formulation of the quasicontinuum method based on energy sampling in clusters’, J. Mech. Phys. Solids 57, 87108.CrossRefGoogle Scholar
Fischmeister, H., Exner, H., Poech, M.-H., Kohlhoff, S., Gumbsch, P., Schmauder, S., Sigi, L. S. and Spiegler, R. (1989), ‘Modelling fracture processes in metals and composite materials’, Z. Metallkde. 80, 839846.Google Scholar
Friesecke, G. and Theil, F. (2002), ‘Validity and failure of the the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice’, J. Nonlin. Sci. 12, 445478.CrossRefGoogle Scholar
Garcia-Cervera, C. J., Lu, J. and W. E, (2007), ‘A sub-linear scaling algorithm for computing the electronic structure of materials’, Commun. Math. Sci. 5, 9991026.Google Scholar
Gavini, V., Bhattacharya, K. and Ortiz, M. (2007), ‘Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation’, J. Mech. Phys. Solids 55, 697718.CrossRefGoogle Scholar
Gunzburger, M. and Zhang, Y. Z. (2010), ‘A quadrature-rule type approximation to the quasi-continuum method’, Multiscale Model. Simul. 8, 571590.CrossRefGoogle Scholar
Haq, S., Movchan, A. B. and Rodin, G. J. (2007), ‘Lattice Green's functions in nonlinear analysis of defects’, J. Appl. Mech. 74, 686690.CrossRefGoogle Scholar
Hardy, R. (1982), ‘Formulas for determining local properties in molecular dynamics simulations: Shock waves’, J. Chem. Phys. 76, 622628.CrossRefGoogle Scholar
Hudson, T. and Ortner, C. (2012), ‘On the stability of Bravais lattices and their Cauchy-Born approximations’, M2AN: Math. Model. Numer. Anal. 46, 81110.CrossRefGoogle Scholar
Iyer, M. and Gavini, V. (2011), ‘A field theoretical approach to the quasi-continuum method’, J. Mech. Phys. Solids 59, 15061535.CrossRefGoogle Scholar
Kanzaki, H. (1957), ‘Point defects in face-centred cubic lattice I: Distortion around defects’, J. Phys. Chem. Solids 2, 2436.CrossRefGoogle Scholar
Kim, W. K., Luskin, M., Perez, D., Tadmor, E. B. and Voter, A. F. (2012), Hyper-QC: An accelerated finite-temperature quasicontinuum method using hyper-dynamics. Submitted.Google Scholar
Knap, J. and Ortiz, M. (2001), ‘An analysis of the quasicontinuum method’, J. Mech. Phys. Solids 49, 18991923.CrossRefGoogle Scholar
Kohlhoff, S., Gumbsch, P. and Fischmeister, H. F. (1991), ‘Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model’, Phil. Mag. A 64, 851878.CrossRefGoogle Scholar
Langwallner, B., Ortner, C. and Süli, E. (2013), ‘Atomistic-to-continuum coupling approximation of a one-dimensional toy model for density functional theory’, Multiscale Model. Simul. 11, 5991.CrossRefGoogle Scholar
Li, X. (2009), ‘Efficient boundary condition for molecular statics models of solids’, Phys. Rev. B 80, 104112.Google Scholar
Li, X. H. and Luskin, M. (2013), ‘Lattice stability for atomistic chains modeled by local approximations of the embedded atom method’, Comput. Mater. Sci. 66, 96103.CrossRefGoogle Scholar
Li, X. H., Luskin, M. and Ortner, C. (2012), ‘Positive-definiteness of the blended force-based quasicontinuum method’, SIAM J. Multiscale Model. Simul. 10, 10231045.CrossRefGoogle Scholar
Li, X. H., Luskin, M., Ortner, C. and Shapeev, A. (2013), Theory-based benchmarking of the blended force-based quasicontinuum method. Manuscript.CrossRefGoogle Scholar
Li, X. H., Luskin, M., Ortner, C., Shapeev, A. and Vankoten, B. (2013). Manuscript.Google Scholar
Lin, P. (2003), ‘Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model’, Math. Comp. 72, 657675.CrossRefGoogle Scholar
Lin, P. (2007), ‘Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects’, SIAM J. Numer. Anal. 45, 313332.CrossRefGoogle Scholar
Liu, W. K., Karpov, E. G. and Park, H. S. (2006 a), Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, Wiley.CrossRefGoogle Scholar
Liu, W. K., Park, H., Qian, D., Karpov, E. G., Kadowaki, H. and Wagner, G. J. (2006 b), ‘Bridging scale methods for nanomechanics and materials’, Comput. Methods Appl. Mech. Engng 195, 14071421.CrossRefGoogle Scholar
Lu, J. and Ming, P. (2012), Stability of a force-based hybrid method in three dimensions with sharp interface. arXiv:1212.3643Google Scholar
Lu, J. and Ming, P. (2013), ‘Convergence of a force-based hybrid method in three dimensions’, Commun. Pure Appl. Math. 66, 83108.CrossRefGoogle Scholar
Luskin, M. and Ortner, C. (2009), ‘An analysis of node-based cluster summation rules in the quasicontinuum method’, SIAM J. Numer. Anal. 47, 30703086.CrossRefGoogle Scholar
Luskin, M. and Ortner, C. (2012), Linear stationary iterative methods for the force-based quasicontinuum approximation. In Numerical Analysis and Multiscale Computations (Engquist, B., Runborg, O. and Tsai, R., eds), Vol. 82 of Lecture Notes in Computer Science and Engineering, Springer, pp. 331368.CrossRefGoogle Scholar
Luskin, M., Ortner, C. and Van Koten, B. (2013), ‘Formulation and optimization of the energy-based blended quasicontinuum method’, Comput. Methods Appl. Mech. Engng 253, 160168.CrossRefGoogle Scholar
Makridakis, C. and Süli, E. (2013), ‘Finite element analysis of Cauchy-Born approximations to atomistic models’, Arch. Ration. Mech. Anal. 207, 813843.CrossRefGoogle Scholar
Makridakis, C., Mitsoudis, D. and Rosakis, P. (2012), On atomistic-to-continuum couplings without ghost forces in three dimensions. arXiv:1211.7158Google Scholar
Makridakis, C., Ortner, C. and Süli, E. (2011), A priori error analysis of two force-based atomistic/continuum models of a periodic chain’, Numer. Math. 119, 83121.CrossRefGoogle Scholar
Miller, R. and Rodney, D. (2008), ‘On the nonlocal nature of dislocation nucleation during nanoindentation’, J. Mech. Phys. Solids 56, 12031223.CrossRefGoogle Scholar
Miller, R. and Tadmor, E. (2003), ‘The quasicontinuum method: Overview, applications and current directions’, J. Computer-Aided Mater. Design 9, 203239.CrossRefGoogle Scholar
Miller, R. and Tadmor, E. (2009), ‘A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods’, Model. Simul. Mater. Sci. Engng 17, 053001.CrossRefGoogle Scholar
Ming, P. and Yang, J. Z. (2009), ‘Analysis of a one-dimensional nonlocal quasicontinuum method’, Multiscale Model. Simul. 7, 18381875.CrossRefGoogle Scholar
Mullins, M. and Dokainish, M. (1982), ‘Simulation of the (001) plane crack in α-iron employing a new boundary scheme’, Phil. Mag. A 46, 771787.CrossRefGoogle Scholar
Olson, D., Bochev, P., Luskin, M. and Shapeev, A. (2013), An optimization-based atomistic-to-continuum coupling method. Manuscript.CrossRefGoogle Scholar
Ortner, C. (2011), A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D’, Math. Comp. 80, 12651285.CrossRefGoogle Scholar
Ortner, C. (2012), ‘The role of the patch test in 2D atomistic-to-continuum coupling methods’, ESAIM: Math. Model. Numer. Anal. 46, 12751319.CrossRefGoogle Scholar
Ortner, C. and Shapeev, A. (2012), Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. arXiv:1204.3705Google Scholar
Ortner, C. and Shapeev, A. V. (2013), ‘Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2D triangular lattice’, Math. Comp., to appear.Google Scholar
Ortner, C. and Süli, E. (2008), ‘Analysis of a quasicontinuum method in one dimension’, M2AN: Math. Model. Numer. Anal. 42, 5791.CrossRefGoogle Scholar
Ortner, C. and Theil, F. (2013), ‘Justification of the Cauchy–Born approximation of elastodynamics’, Arch. Ration. Mech. Anal. 207, 10251073.CrossRefGoogle Scholar
Ortner, C. and Wang, H. (2013), A posteriori error control for a quasicontinuum approximation of a periodic chain’, Math. Model. Methods Appl. Sci., to appear.Google Scholar
Ortner, C. and Zhang, L. (2012), Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: A 2D model problem, SIAM J. Numer. Anal. 50, 29402965.CrossRefGoogle Scholar
Ortner, C., Shapeev, A. and Zhang, L. (2013), Manuscript.Google Scholar
Parks, M. L., Bochev, P. B. and Lehoucq, R. B. (2008), ‘Connecting atomistic-to-continuum coupling and domain decomposition’, Multiscale Model. Simul. 7, 362380.CrossRefGoogle Scholar
Prudhomme, S., Bauman, P. T. and Oden, J. T. (2006), ‘Error control for molecular statics problems’, Internat. J. Multiscale Comput. Engng 4, 647662.CrossRefGoogle Scholar
Prudhomme, S., Dhia, H. Ben, Bauman, P. T., Elkhodja, N. and Oden, J. T. (2008), ‘Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method’, Comput. Methods Appl. Mech. Engng 197, 33993409.CrossRefGoogle Scholar
Rudd, R. and Broughton, J. (2000), ‘Concurrent coupling of length scales in solid state systems’, Physica Status Solidi B 217, 251291.3.0.CO;2-A>CrossRefGoogle Scholar
Rudd, R. E. and Broughton, J. Q. (2005), ‘Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature’, Phys. Rev. B 72, 144104.CrossRefGoogle Scholar
Seleson, P., Beneddine, S. and Prudhomme, S. (2013), ‘A force-based coupling scheme for peridynamics and classical elasticity’, Comput. Mater. Sci. 66, 3449.CrossRefGoogle Scholar
Seleson, P. and Gunzburger, M. (2010), ‘Bridging methods for atomistic-to-continuum coupling and their implementation’, Commun. Comput. Phys. 7, 831876.Google Scholar
Shapeev, A. V. (2011), ‘Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions’, Multiscale Model. Simul. 9, 905932.CrossRefGoogle Scholar
Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R. and Ortiz, M. (1999), ‘An adaptive finite element approach to atomic-scale mechanics: The quasicontinuum method’, J. Mech. Phys. Solids 47, 611642.CrossRefGoogle Scholar
Shilkrot, L. E., Miller, R. E. and Curtin, W. A. (2004), ‘Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics’, J. Mech. Phys. Solids 52, 755787.CrossRefGoogle Scholar
Shimokawa, T., Mortensen, J. J., Schiøtz, J. and Jacobsen, K. W. (2004), ‘Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region’, Phys. Rev. B 69, 214104.CrossRefGoogle Scholar
Silling, S. and Lehoucq, R. (2010), Peridynamic theory of solid mechanics. In Advances in Applied Mechanics (Aref, H. and van der Giessen, E., eds), Vol. 44 of Advances in Applied Mechanics, Elsevier, pp. 73168.Google Scholar
Sinclair, J. E. (1971), ‘Improved atomistic model of a bcc dislocation core’, J. Appl. Phys. 42, 5231.CrossRefGoogle Scholar
Tadmor, E. B. and Miller, R. E. (2011), Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press.CrossRefGoogle Scholar
Tadmor, E. B., Legoll, F., Kim, W. K., Dupuy, L. M. and Miller, R. E. (2013), ‘Finitetemperature quasicontinuum’, Appl. Mech. Rev., to appear.Google Scholar
Tadmor, E. B., Ortiz, M. and Phillips, R. (1996), ‘Quasicontinuum analysis of defects in solids’, Philosophical Magazine A 73, 15291563.CrossRefGoogle Scholar
Tang, S., Hou, T. Y. and Liu, W. K. (2006), ‘A mathematical framework of the bridging scale method’, Internat. J. Numer. Methods Engng 65, 16881713.CrossRefGoogle Scholar
Trinkle, D. R. (2008), ‘Lattice Green function for extended defect calculations: Computation and error estimation with long-range forces’, Phys. Rev. B 78, 014110.CrossRefGoogle Scholar
Van Koten, B. and Luskin, M. (2011), ‘Analysis of energy-based blended quasicontinuum approximations’, SIAM J. Numer. Anal. 49, 21822209.CrossRefGoogle Scholar
Van Koten, B. and Ortner, C. (2012), Symmetries of 2-lattices and second order accuracy of the Cauchy-Born model. arXiv:1203.5854Google Scholar
Van Koten, B., Li, X. H., Luskin, M. and Ortner, C. (2012), A computational and theoretical investigation of the accuracy of quasicontinuum methods. In Numerical Analysis of Multiscale Problems (Graham, I., Hou, T., Lakkis, O. and Scheichl, R., eds), Vol. 83 of Lecture Notes in Computer Science and Engineering, Springer, pp. 6796.CrossRefGoogle Scholar
Voter, A. F. (1997), ‘Hyperdynamics: Accelerated molecular dynamics of infrequent events’, Phys. Rev. Lett. 78, 39083911.CrossRefGoogle Scholar
Wallace, D. (1998), Thermodynamics of Crystals, Dover.Google Scholar
Wallin, M., Curtin, W., Ristinmaa, M. and Needleman, A. (2008), ‘Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity’, J. Mech. Phys. Solids 56, 31673180.CrossRefGoogle Scholar
Woodward, C. and Rao, S. (2002), ‘Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta’, Phys. Rev. Lett. 88, 216402.CrossRefGoogle ScholarPubMed
Xiao, S. P. and Belytschko, T. (2004), ‘A bridging domain method for coupling continua with molecular dynamics’, Comput. Methods Appl. Mech. Engng 193, 16451669.CrossRefGoogle Scholar