Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:38:10.023Z Has data issue: false hasContentIssue false

A SOBOLEV ALGEBRA OF VOLTERRA TYPE

Published online by Cambridge University Press:  12 December 2012

JOSÉ E. GALÉ*
Affiliation:
Departamento de Matemáticas & IUMA, Universidad de Zaragoza, 50009 Zaragoza, Spain (email: gale@unizar.es)
LUIS SÁNCHEZ-LAJUSTICIA
Affiliation:
Departamento de Matemáticas & IUMA, Universidad de Zaragoza, 50009 Zaragoza, Spain (email: luiss@unizar.es)
*
For correspondence; e-mail: gale@unizar.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a family of radical convolution Banach algebras on intervals (0,a] which are of Sobolev type; that is, they are defined in terms of derivatives. Among other properties, it is shown that all epimorphisms and derivations of such algebras are bounded. Also, we give examples of nontrivial concrete derivations.

Type
Research Article
Copyright
Copyright © 2012 Australian Mathematical Publishing Association Inc.

References

[1]Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96 (Birkhäuser, Basel, 2001).CrossRefGoogle Scholar
[2]Arendt, W. and Kellerman, H., ‘Integration solutions of Volterra integro-differential equations and applications’, in: Volterra Integrodifferential Equations in Banach Spaces and Applications (Trento, 1987), Pitman Res. Notes Math. Ser., 190 (eds. Da Prato, G. and Iannelli, M.) (Longman Sci. Tech., Harlow, 1989), pp. 2151.Google Scholar
[3]Candeal, J. C. and Galé, J. E., ‘On the existence of analytic semigroups bounded on the half-disc in some Banach algebras’, Bull. Lond. Math. Soc. 21 (1989), 573576.CrossRefGoogle Scholar
[4]Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24 (Clarendon Press, Oxford, 2000).Google Scholar
[5]Dales, H. G. and Esterle, J., ‘Discontinuous homomorphisms from C(X)’, Bull. Amer. Math. Soc. 83 (1977), 257259.CrossRefGoogle Scholar
[6]Esterle, J., ‘Homomorphismes discontinus des algèbres de Banach commutatives separables’, Studia Math. 66 (1979), 119141.CrossRefGoogle Scholar
[7]Esterle, J., ‘Universal properties of some commutative radical Banach algebras’, J. reine angew. Math. 321 (1981), 124.Google Scholar
[8]Esterle, J., ‘Elements for a classification of commutative radical Banach algebras’, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), Lecture Notes in Mathematics, 975 (eds. Bachar, J. M.et al.) (Springer, Berlin, 1983), pp. 465.CrossRefGoogle Scholar
[9]Galé, J. E. and Miana, P. J., ‘One-parameter groups of regular quasimultipliers’, J. Funct. Anal. 237 (2006), 153.CrossRefGoogle Scholar
[10]Galé, J. E., Miana, P. J. and Royo, J. J., ‘Estimates of the Laplace transform on convolution Sobolev algebras’, J. Approx. Theory 164 (2012), 162178.CrossRefGoogle Scholar
[11]Galé, J. E., Miana, P. J. and Royo, J. J., ‘Nyman type theorem in convolution Sobolev algebras’, Rev. Mat. Complut. 25 (2012), 119.CrossRefGoogle Scholar
[12]Galé, J. E. and Wawrzyńczyk, A., ‘Standard ideals in weighted algebras of Korenblyum and Wiener types’, Math. Scand. 108 (2011), 291319.CrossRefGoogle Scholar
[13]Galé, J. E. and Wawrzyńczyk, A., ‘Standard ideals in convolution Sobolev algebras on the half-line’, Colloq. Math. 124 (2011), 2334.CrossRefGoogle Scholar
[14]Ghahramani, F., ‘The group of automorphisms of L 1(0,1) is connected’, Trans. Amer. Math. Soc. 314 (1989), 851859.Google Scholar
[15]Jewell, N. P. and Sinclair, A. M., ‘Epimorphisms and derivations on L 1(0,1) are continuous’, Bull. Lond. Math. Soc. 8 (1976), 135139.CrossRefGoogle Scholar
[16]Kamowitz, H. and Scheinberg, S., ‘Derivations and automorphisms of L 1(0,1)’, Trans. Amer. Math. Soc. 135 (1969), 415427.Google Scholar
[17]Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, Switzerland, 1993).Google Scholar